
Complexity
Object Orientated Analysis and Design

Benjamin Kenwright



Outline

Review Object Orientated Programming 

Concepts (e.g., encapsulation, data 

abstraction, ..)

What do we mean by Complexity?

How do we manage Complexity?

Design and Manage Complex Systems

Summary/Discussion



Last Week

Reviewed Concepts around Object 

Orientated Analysis and Design

Revised OOP Principles (e.g., Java)

Read Chapter 1



Question

Which of the following mechanisms is/are 
provided by Object Oriented Language to 
implement Object Oriented Model?

A. Encapsulation

B. Inheritance

C. Polymorphism

D. All of the mentioned



Answer

D. All of the mentioned



Question

Which of these is the functionality of 

‘Encapsulation’?

A. Binds together code and data

B. Using single interface for general class 

of actions

C. Reduce Complexity

D. All of the mentioned



Answer

A. Binds together code and data

`Encapsulation' acts as protective 

wrapper that prevents code and data 

from being accessed by other code 

defined outside the wrapper



What is the output of this Program?

A. Compilation error

B. Run time error

C. Output : a, b and c 10 20 30

D. None of the mentioned



Answer

A. Compilation error

Explanation: Private members of a class 

cannot be accessed directly. In the above 

program, the variable c is a private 

member of class ‘Test’ and can only be 

accessed through its methods.



Question

Which of the following is a mechanism 
by which object acquires the properties 
of another object?

A. Encapsulation

B. Abstraction

C. Inheritance

D. Polymorphism



Answer

Answer: C. Inheritance

Explanation: ‘Inheritance’ is the 

mechanism provided by Object Oriented 

Language, which helps an object to 

acquire the properties of another object 

usually child object from parent object.



Why is Software Inherently 

Complex?

List the four elements

Revision from Reading Chapter 1 Last 

Week



Why is Software Inherently 

Complex?

Inherent Complexity derives from four 

elements: 

1.the complexity of the problem domain

2.the difficulty of managing the 

development process

3.the flexibility possible through software

4.problems of characterizing the behavior

of discrete systems



1. Complexity of the Problem 

Domain
Requirements (functional and non-functional)
e.g., electronic system of a multiengine aircraft, a 

cellular phone switching system, or an 
autonomous robot

Usability, performance, cost, survivability, and 
reliability

Users may have only vague ideas of what they 
want in a software system
generally lacks expertise in the domain

Difficult to express requirements
e.g., large volumes of texts (difficult to 

comprehend, ambiguous ..)





Complexity of the Problem 

Domain Cont.

Changing requirements 

during development

early products, such as 

design documents and 

prototypes

can lead users to better 

understand and articulate 

their real needs



Evolve Over Time

it is maintenance when we correct 

errors 

it is evolution when we respond to 

changing requirements; 

it is preservation when we continue to 

use extraordinary means to keep an 

ancient and decaying piece of software 

in operation



2. Difficulty of Managing the 

Development Process

Fundamental task of the software 

development team is to engineer the 

illusion of simplicity



Cont.
Strive to write less code 

Reusing frameworks of existing designs and 
code

Avoid reinventing wheel

Sheer volume of a system’s requirements is 
sometimes inescapable 

Not unusual today to find systems whose size 
is measured in hundreds of thousands or even 
millions of lines of code

More developers so more complex communication 
and hence more difficult coordination (location, 
skillset, attitude, synergy, ..)



3. Flexibility Possible through 

Software

Developer able to express almost any 

kind of abstraction

Flexibility incredibly seductive property

Few uniform rules, codes and standards 

for quality 

Makes developing software labor-intensive 



4. Problems of Characterizing the 

Behavior of Discrete Systems

Large application, there may be hundreds or 
even thousands of variables and multiple 
control threads

Large systems, there is a combinatorial 
explosion of possibilities (states)

Manage this by decomposing the behavior in one 
part of a system so it has a minimal impact on the 
behavior in another

However, worst circumstances, an external 
event may corrupt the state of a system (failed 
to take into account certain interactions)





Question

What are the four elements that 

Inherent Complexity derives from?



Answer

Inherent Complexity derives from four 

elements: 

1. complexity of the problem domain

2. difficulty of managing the development 

process

3. flexibility possible through software

4. problems of characterizing the behavior

of discrete systems



What are the Five Attributes of 

a Complex System?



What are the Five Attributes of 

a Complex System?

Five attributes common to all complex 

systems

1.Hierarchic Structure

2.Relative Primitives

3.Separation of Concerns

4.Common Patterns

5.Stable Intermediate Forms



1.Hierarchic Structure

Frequently, complexity 
takes the form of a 
hierarchy, whereby a 
complex system is 
composed of interrelated 
subsystems that have in 
turn their own 
subsystems, and so on, 
until some lowest level of 
elementary components 
is reached



2. Relative Primitives

Components in a system are primitive 

and relatively arbitrary - largely up to the 

discretion of the observer of the system 

what they are



3. Separation of Concerns

Decomposable parts are not necessarily 

completely independent



4. Common Patterns

Composed of only a few different kinds 

of subsystems in various combinations 

and arrangements



5. Stable Intermediate Forms

Complex systems will evolve from 

simple systems

Never craft these primitive objects 

correctly the first time

Improve them over time as we learn 

more about the real behavior of the 

system



Question

Requirements change during 

development?

A. True

B. False



Answer

A. True



Question

Complex systems do not evolve from 

simple systems?



Answer

A. False

Complex systems will evolve from simple 

systems 



Organized and Disorganized 

Complexity

Common abstractions and mechanisms 

greatly facilitates our understanding of 

complex systems



Canonical Form of a Complex 

System

Canonical Form of a Complex System

Different hierarchies are usually present 

within the same complex system 

(perspective and requirements)

Successful complex software systems 

are those whose designs explicitly

encompass well-engineered class and 

object structures and embody the five 

attributes of complex systems



Canonical 

Form of a 

Complex 

System



Limitations of the Human 

Capacity for

Dealing with Complexity

We must think about many things at once

cope with a fairly large, intricate, and sometimes 
nondeterministic state space

Maximum number of chunks of information that 
an individual can simultaneously comprehend 
is on the order of seven, plus or minus two

Relates to the capacity of short-term memory 
and speed to process data (e.g., five seconds 
to accept a new chunk of information)



Basic Limits on our Ability to 

Cope with Complexity. 

How then do we Resolve this 

Predicament?



Solution

Order/Logic

Decomposition

Structure

Abstraction/Simplificiations



Objects or Processes

Complex systems can be viewed by 

focusing on either things or processes; 

there are compelling reasons for 

applying object-oriented decomposition, 

in which we view the world as a 

meaningful collection of objects that 

collaborate to achieve some higher-

level behavior



Analysis & Design Methods 

Dozens of design methods have been 

proposed. However, most methods can 

be categorized as one of three kinds: 



Three Design Categories

Top-down structured design

Data-driven design

Object-oriented design



Cont.

Top-down structured design - applies

algorithmic decomposition

Data-driven design - mapping system 

inputs to outputs derives the structure of 

a software system

Object-oriented design - model software 

systems as collections of cooperating 

objects



Question

What is the maximum number of chunks 
of information that an individual can 
simultaneously comprehend?

A. 5 to 9 Chunks

B. 3 to 8 Chunks

C. 1 to 5 Chunks

D. 8 to 10 Chunks



Answer

A. 5 to 9 Chunks

Maximum number of chunks of 

information that an individual can 

simultaneously comprehend is on the 

order of seven, plus or minus two



What is the Role of 

Abstraction? 



What is the Role of 

Abstraction? 

Individual can comprehend only a few 

chunks of information

We have an exceptionally powerful 

technique for dealing with complexity

We abstract from it

E.g., Unable to master the entirety of a 

complex object, we choose to ignore its 

inessential details, dealing instead with the 

generalized, idealized model of the object



Abstraction (Hierarchical)

Classifying objects into groups of related 
abstractions so we can explicitly 
distinguish common and distinct properties 
of different objects 
helps us to master/manage inherent 

complexity

Identifying the hierarchies within a 
complex software system
simplify and embody tremendously 

complicated behavior



Question

What are the three Design Categories?

A. object-orientated, system-based, logic-
driven

B. data-driven, top-down, object-orientated

C. structured, object-orientated, hierarchical

D. automated, object-orientated, synergetic-
based

E. top-down, object-orientated, system-driven



Answer

B. data-driven, top-down, object-

orientated



What is the Purpose of 

Design?



What is the purpose of 

Design?
Purpose of design is to construct a system 
that:
Satisfies a given (perhaps informal) functional 

specification

Conforms to limitations of the target medium

Meets implicit or explicit requirements on 
performance and resource usage

Satisfies implicit or explicit design criteria on 
the form of the artifact

Satisfies restrictions on the design process 
itself, such as its length or cost, or the tools 
available for doing the design



Question

What are the Five Attributes of a Complex 
System?

A. Relative Primitives Separation of Concerns, 
Hierarchic Structure, Common Patterns, Stable 
Intermediate Forms

B. Hierarchic Structure, Common Primitives, 
Separation of Concerns, Stable Patterns, 
Dynamic Patterns

C. Hierarchic Structure, Primitive Structures, 
Separation Patterns, Stable Forms, 
Intermediate Attributes



Answer

Five Attributes of a Complex System:

A. Relative Primitives Separation of 

Concerns, Hierarchic Structure, 

Common Patterns, Stable Intermediate 

Forms



Question

Which of the following is the 

functionality of ‘Data Abstraction’?

A. Reduce Complexity

B. Binds together code and data

C. Parallelism

D. None of the mentioned



Answer

A. Reduce Complexity

Explanation: An essential element of 

Object Oriented Programming is ‘Data 

Abstraction’ which means hiding things. 

Complexity is managed through 

abstraction.



Summary

Complexity in Object Orientated Analysis 
and Design

Why Software is Inherently Complex

Human Intellectual Capacity

Engineer the Illusion of Simplicity

Evolve from stable intermediate forms

Manage complexity through 
decomposition, abstraction, and hierarchy

Focus on either things or processes
view the world as a meaningful collection of 

objects



This Week

Review Slides

Read Chapter 2

Quizzes/Questions



Questions/Discussion


