
Classes and

Objects
Object Orientated Analysis and Design

Benjamin Kenwright

Outline

Review Previous Weeks

Object Model, Complexity, ..

What do we mean by Classes and

Objects?

Summary/Discussion

Review

Last Week Object Model and Evolution

of Software Engineering

Familiar with Chapters 1, 2 and 3

Read Chapter 3 Last Week

Reviewing material regularly

e.g., complexity, object orientated

concepts, ..

Revision Question

Write down the four elements that

Inherent Complexity derives from?

(5 Minutes)

Answer

Inherent Complexity derives from four

elements:

1.complexity of the problem domain

2.difficulty of managing the development

process

3.flexibility possible through software

4.problems of characterizing the behavior

of discrete systems

Revision Question

What are the three important parts of
Object-Oriented Programming (OOP)?

a) uses objects; each object is an instance of
some class; classes may be related to one
another via inheritance

b) use modules; hierarchical structure;
structures must be related to one another via
inheritance

c) hierarchical structure; collection of objects;
objects must be related to one another via
polymorphism

Answer

a) uses objects; each object is an

instance of some class; classes may be

related to one another via inheritance

Revision Question

Why is modularity important?

a) Enables us to partitioning a program into
individual components can reduce its
complexity

b) Enables us to develop more optimised
algorithms

c) Modularity causes issues with boundaries
(or interfaces) within the program

Answer

a) Enables us to partitioning a program

into individual components can reduce

its complexity

Building Blocks

When we use object-oriented methods

to analyze or design a complex software

system, our basic building blocks are

classes and objects

What Is and What Isn’t an

Object?

What Is and What Isn’t

an Object?

An object is an entity that has state,

behavior, and identity. The structure and

behavior of similar objects are defined

in their common class. The terms

instance and object are interchangeable

Question

An object is an entity that has:

a) state, action, dependencies

b) identity, state, behavior

c) behaviour, action, state

d) class, state, memory

Answer

b) identity, state, behavior

State

The state of an object encompasses all of
the (usually static) properties of the object
plus the current (usually dynamic) values
of each of these properties

Examples of State Properties
Elevators travel up or down

• Current floor

Vending machines accept coins
• Number of coins deposited

Clocks indicate the current time
• The number of minutes since the last hour

Behavior

Behavior is how an object acts and

reacts, in terms of its state changes and

message passing

Example: Behavior of a car: braking,

changing gears, opening doors, moving

forwards or backwards, ..

Identity

Identity is that property of an object

which distinguishes it from all other

objects

Question

State is how an object acts and reacts,

in terms of its state changes and

message passing

a) True

b) False

Answer

b) False

Behavior is how an object acts and

reacts, in terms of its state changes and

message passing.

What Is and What Isn’t

a Class?

What Is and What Isn’t

a Class?
A class is a set of objects that share a
common structure, common behavior, and
common semantics

A single object is simply an instance of a
class

What isn’t a class?

An object is not a class. Objects that share no
common structure and behavior cannot be
grouped in a class because, by definition, they
are unrelated except by their general nature as
objects

Review

Inheritance

Inheritance

Inheritance is an interesting concept for

representing concrete relationships

Including generalization/specialization

relationships

A subclass may inherit the structure and

behavior of its superclass

Polymorphism

Generally, the ability to appear in many forms. In
object-oriented programming, polymorphism
refers to a programming language's ability to
process objects differently depending on their
data type or class. More specifically, it is the
ability to redefine methods for derived classes

Helps develop more concise clean error free code

Without polymorphism, the developer ends up writing
code consisting of large
case or switch statements (conditional logic)

Inheritance without polymorphism is possible, but
it is certainly not very useful

Polymorphism and late binding go hand in hand

The Role of Classes and Objects

in Analysis and Design

During analysis and the early stages of
design, the developer has two primary
tasks:

1. Identify the classes that form the
vocabulary of the problem domain

2. Invent the structures whereby sets of
objects work together to provide the

behaviors that satisfy the requirements of
the problem

Measuring the Quality of an

Abstraction

How can one know if a given class or

object is well designed?

Measuring the Quality of an

Abstraction

Five meaningful metrics to measure the

quality of abstraction are:

1. Coupling

2. Cohesion

3. Sufficiency

4. Completeness

5. Primitivenes

Question

What are the five meaningful metrics to
measure the quality of abstraction?

a) Contracts, Cohesion, Completeness,
Primitivenes, Sufficiency

b) Cohesion, Coupling, Sufficiency,
Completeness, Primitivenes

c) Coupling , Cohesion, Safety,
Completeness, Primitivenes

Answer

b) Cohesion, Coupling, Sufficiency,

Completeness, Primitivenes

Interfaces and

Implementations
Larger problem is decomposed into
smaller problems (e.g., classes)

Binding contract between classes

Interface of a class provides information
on what is viewable to the outside
(contracted rules)

Interface allows a class to become more
formal about the behavior it promises to
provide

Interface

The interface of a class is divided into four
accessibility levels:

1. Public: a declaration that is accessible to all
clients

2. Protected: a declaration that is accessible
only to the class itself and its subclasses

3. Private: a declaration that is accessible only
to the class itself

4. Package: a declaration that is accessible only
by classes in the same package

Advantages of Interfaces

Interfaces solve many problems associated
with code reuse in object-oriented
programming

Allows the construction of flexible
dependencies for a class definition

Dependencies make it easier to maintain or
extend the class without breaking the client

Resolves the problem of having tedious or
impossible to improve the code

Helps with maintainability and extensibility

Question

Four accessibility levels of an interfaces

are:

a) public, protected, private, proactive

b) protected, public, package, passive

c) public, private, passive, proactive

d) package, public, protected, private

Answer

d) package, public, protected, private

Relationships

The three primary kinds of relationship

between components are:

1. Association

2. Inheritance and

3. Aggregation

Association

A relationship denoting a semantic

connection between two classes

Aggregation

A whole/part relationship where one

object is composed of one or more

other objects, each of which is

considered a part of the whole. This

relationship is a weak form of

containment in that the lifetimes of the

whole and its parts are independent

Inheritance

A relationship among classes, wherein one
class shares the structure or behavior
defined in one (single inheritance) or more
(multiple inheritance) other classes.
Inheritance defines an “is a” hierarchy
among classes in which a subclass
inherits from one or more generalized
superclasses; a subclass typically
specializes its superclasses by
augmenting or redefining existing structure
and behavior

Discussion Activity

Explain the differences between

Aggregation and Inheritance?

(5 Minutes)

Aggregation vs Inheritance

Aggregation: create new functionality by taking
other classes and combining them into a new
class. Attach an common interface to this new
class for interoperability with other code

Inheritance: extend the functionality of a class
by creating a subclass. Override superclass
members in the subclasses to provide new
functionality. Make methods abstract/virtual to
force subclasses to "fill-in-the-blanks" when the
superclass wants a particular interface but is
agnostic about its implementation.

Design Decisions

Criteria to be considered when making
class design decisions:

Reusability: Would this behavior be more
useful in more than one context?

Complexity: How difficult is it to implement
the behavior?

Applicability: How relevant is the behavior
to the type in which it might be placed?

Implementation knowledge: Does the
behavior’s implementation depend on the
internal details of a type?

Question

What are four criteria considered when
making class design decisions:

a) reusability, complexity, implementation
knowledge, attributes

b) complexity, reusability, applicability,
implementation knowledge

c) complexity, scalability, applicability,
implementation knowledge

d) performance, scalability, applicability,
implementation knowledge

Answer

b) complexity, reusability, applicability,

implementation knowledge

Discussion Activity

Explain some of the trade-offs decisions

that might be made during the analysis

and design of a software project?

(5 Minutes)

What is the Law of Demeter?

What is the Law of Demeter?

The Law of Demeter (LoD) or ‘principle of
least knowledge’ is a design guideline for
developing software, particularly object-
oriented programs

"Only talk to your friends" is the motto

Reducing the dependencies between
classes to make your code more flexible
(i.e., reduces coupling between objects)
`low-coupling’

Each component should have only limited
knowledge about other units

Advantages of LoD

The advantage of following the Law of

Demeter is that the resulting software

tends to be more maintainable and

adaptable

Since objects are less dependent on the

internal structure of other objects, object

containers can be changed without

reworking their callers

Disadvantages of LoD

May also result in having to write many

wrapper methods to propagate calls to

components; in some cases, this can

add noticeable time and space

overhead

Trade-off Solution – Not always positive

Augment a number of methods into

modules

Summary

Clear understanding of classes and

objects

An object has state, behavior, and identity

The structure and behavior of similar

objects are defined in their common class

Behavior is how an object acts and reacts

in terms of its state changes and message

passing

This Week

Review Slides

Quizzes Online

Read Chapter 4

Project

Groups (2-3 People)

Create Version Control Repository

• GitHub

• Submit Repository Name

Group Project

Design ATM System
i.e., Automated Teller Machine (Cash

Machine)

Research & Investigation
Read around the topic

Features/Operations
Custom Details

Bank Database

Security/Validation

Flow Diagrams/Operations/States

Project

Start Early!

Time Management

Evidenced (e.g., Version Control)

Each person must submit

report/details/logs

Each team should have a `custom’ solution

Questions/Discussion

Question

Identity is that property of an object

which distinguishes it from all other

objects

a) True

b) False

Answer

a) True

Question

Inheritance create new functionality by

taking other classes and combining

them into a new class. Attaching

common interfaces to this new class for

interoperability with other code

a) True

b) False

Answer

b) False

Aggregation: create new functionality by

taking other classes and combining

them into a new class. Attach an

common interface to this new class for

interoperability with other code

Question

A class is the same as an object.

Objects share common structure and

behavior as a class because and by

definition are related by their general

nature as objects

a) True

b) False

Answer

b) False

An object is not a class. Objects that

share no common structure and behavior

cannot be grouped in a class because, by

definition, they are unrelated except by

their general nature as objects

Question

An object-oriented program consists of

many objects. Each object has the

same identity, state (attributes, data,

and their current values) and behavior

(operations)

a) True

b) False

Answer

b) False

An object-oriented program consists of

many objects. Each object has the same

(wrong) identity, state (attributes, data,

and their current values) and behavior

(operations)

Classes and Objects are the Building

Blocks for Analysis and Design Solutions

for Complex Systems

Individual Have Different

Perspectives/Views – Clear Set

of Requirements/Specifications

