
Classification
Object Orientated Analysis and Design

Benjamin Kenwright



Submissions

Every group member

Submitted Group GitHub Repository 

Address

Demonstrated this week

Ability to use GitHub

Get comfortable with Version Control

Add/Remove Files/Documents

• `Team’ Exercise



Discussion Activity

Explain in your own words why we use 

version control?

(5 Minutes)



Outline

Review

What do we mean by Classification?

Levels of Abstraction

Identifying Mechanisms

Summary/Discussion

Conclusion

Coursework



Revision Question

An object is an entity that has:

a) state, action, dependencies

b) behaviour, action, state

c) class, state, memory

d) state, identity, behavior



Answer

d) identity, state, behavior



Revision Question

What are the five meaningful metrics to 
measure the quality of abstraction?

a) Contracts, Cohesion, Completeness, 
Primitivenes, Sufficiency

b) Cohesion, Coupling, Sufficiency, 
Completeness, Primitivenes

c) Coupling , Cohesion, Safety, 
Completeness, Primitivenes



Answer

b) Cohesion, Coupling, Sufficiency, 

Completeness, Primitivenes



Revision Question

What is an advantage of polymorphism? 

a) The same program logic can be used with 
objects of several related types. 

b) Variables can be re-used in order to save 
memory.

c) Constructing new objects from old objects of 
a similar type saves time. 

d) Polymorphism is a dangerous aspect of 
inheritance and should be avoided.



Answer

a) The same program logic can be used 

with objects of several related types. 



Classification

Classification is the means whereby we 

order knowledge

recognize key abstractions and 

mechanisms with similarities (sameness)

Seeks to group things that have a 

commonality (e.g., structure or exhibit a 

common behavior)



Activity

Classify the objects in the image below into 

groups (5 Minutes)



Why Classify Objects?

Classification 

and 

generalization 

are important 

functions for any 

language 

describing the 

physical world 



Why Classify Objects?

Helps us to identify generalization, specialization, 
and aggregation hierarchies among classes

Recognizing common patterns of interaction 
among objects, we come to invent the mechanisms 
that serve as the soul of the implementation

Guides decision making about modularization
We may choose to place certain classes and objects 

together in the same module or in different modules, 
depending on the sameness we find among these 
declarations

Coupling and cohesion also indicate a type of 
sameness

Plays a role in allocating processes to processors. 
We place certain processes together in the same 

processor or different processors, depending on 
packaging, performance, or reliability concerns



Why is Classification Difficult?



Why is Classification Difficult?

Boundaries are not always absolute

e.g., fuzzy or overlap multiple 

classifications

Example - look at your leg. Where does 

your knee begin, and where does it end? 

Example - recognizing human speech, how 

do we know that certain sounds connect to 

form a word and are not instead a part of 

any surrounding words?



Classification Dependencies

Classification depends on what you want 
classification to do

Highly dependent on the reason for the 
classification

For example, in Biology, if you want it to 
reflect precisely the genetic relatedness 
among species, that will give you one 
answer. But if you want it instead to say 
something about levels of adaptation, then 
you will get another



Perspective



Important Factors

Different observers will classify the same 
object in different ways

Classification is relative to the perspective
of the observer doing the classification

Intelligent classification requires a 
tremendous amount of creative insight

sometimes the answer is evident, sometimes 
it is a matter of taste, and at other times, the 
selection of suitable components is a crucial 
point in the analysis



Incremental and Iterative 

Nature of Classification

In practice, it is common to assert a 

certain class structure early in a design 

and then revise this structure over time

Experience, Additional knowledge 

discoveries, Identify previously 

unrecognized commonality



Question

Classification is relative to the 

perspective of the observer doing the 

classification

a) True

b) False



Answer

a) True



Identifying Classes 

and Objects

Historically, there have been three 

general approaches to classification:

1. Classical categorization

2. Conceptual clustering

3. Prototype theory



Object-Oriented Analysis

Boundaries between analysis and 

design are fuzzy

Focus on discovering classes and 

objects that form the vocabulary of the 

problem domain

Identify abstractions and mechanisms in 

different models helps provide a design 

solution



Classification Approaches

Approaches for analysis that are 

relevant to object-oriented systems

Classical Approaches

Behavior Analysis

Domain Analysis

Use Case Analysis

CRC Cards

• Class/Responsibilities/Collaborators

Informal English Description

Structured Analysis



Key Abstractions and 

Mechanisms

Identifying Key Abstractions

appropriate choice of objects depends, of 

course, on the purposes to which the 

application will be put and the granularity of 

information to be manipulated



Question

What are the three approaches to 

classification:

a) classical categorization, pattern grouping, 

prototype theory

b) classical categorization, conceptual 

clustering, prototype theory

c) classical categorization, conceptual 

clustering, system theory



Answer

b) classical categorization, conceptual 

clustering, prototype theory



Question

Classification is straightforward and 

simple for all object orientated 

problems?

a) True

b) False



Answer

b) False



Question

Which of the following supports the 

concept of hierarchical classification?

a) Polymorphism

b) Encapsulation

c) Abstraction

d) Inheritance



Answer 

d) Inheritance

Use of Hierarchical classification avoids 

defining the properties of object explicitly 

at each level which have acquired their 

properties from higher levels.



Level of Abstraction



Level of Abstraction

Classes and objects should be at the 

right level of abstraction: neither too 

high nor too low



Naming Key Abstractions

Objects should be named with proper noun phrases, 
such as the Sensor or just simply shape

Classes should be named with common noun phrases, 
such as Sensor or Shape

The names chosen should reflect the names used and 
recognized by the domain experts, whenever possible

Modifier operations should be named with active verb 
phrases, such as draw or moveLeft

Selector operations should imply a query or be named 
with verbs of the form “to be,” such as extentOf or 
isOpen

The use of underscores and styles of capitalization are 
largely matters of personal taste. No matter which 
cosmetic style you use, at least have your programs be 
self-consistent



Identifying Mechanisms



Identifying Mechanisms

Mechanisms are the means whereby 

objects collaborate to provide some 

higher-level behavior

Mechanisms are actually one in a 

spectrum of patterns we find in well-

structured software systems



Example Mechanisms

A mechanical linkage connects the accelerator 
directly to the fuel injectors

An electronic mechanism connects a pressure 
sensor below the accelerator to a computer that 
controls the fuel injectors (a drive-by-wire 
mechanism)

No linkage exists. The gas tank is placed on the 
roof of the car, and gravity causes fuel to flow to 
the engine. Its rate of flow is regulated by a clip 
around the fuel line; pushing on the accelerator 
pedal eases tension on the clip, causing the fuel 
to flow faster (a low-cost mechanism)



Summary

Clear idea of Classification in Object Orientated 
Analysis and Design

Classification and the challenging problem of 
clustering

Classification is an incremental and iterative 
process

Three approaches to classification include 
classical categorization (classification by 
properties), conceptual clustering (classification 
by concepts), and prototype theory 
(classification by association with a prototype)



This Week

Review Slides and Previous Chapters

Read Chapter 5

Online Quizzes

Researching/Planning Project

Version Control

Regularly submitting project updates

Each member of the group (evidence)

Working as a `Team’



Questions/Discussion



Version Control

GitHub

Register and setup your GitHub username

Create repository and every member of the 

group should have access



Coursework
Groups
 Team Orientated Software Engineering Problem

Version Control

Research/Investigating Requirements/Solutions/Options

Submissions

1. System analysis: study, understand, and define requirements for 
the system (model of the system's functional requirements) 

2. Defining the boundaries of the problem 

3. Use-case model 

4. Deployment view 

5. Sequence diagram and operation

6. Design to code (UML design diagram)



Important

Evidence based

Citations/facts/statistics

Repository history

• `Group’ Project





Critical Thinking/Logic

Ask how you could design a system 

`incorrectly’

What is the `wrong’ way? (why)

Don’t just look for a solution

Identify alternatives (explore/research)

What are all the possibilities?

Compare/explain



Requirements

Determine what you must build for your 
customer by defining the boundary of the 
problem
Determining what you must build (limits)

First step is to gather documentation of the 
problem
Aim and associated high-level requirements 

and constraints

Vision statement, functional requirements, 
non-functional requirements, constraints, ...



Final Note

Remember concepts, such as:

flexibility, encapsulation, usability, cost, 

problem requirements, ..

Review slides/reference material and 

ask how they can/cannot help solve the 

problem

`Object Orientated’ Analysis and Design


