
Notation Part 1
Object Orientated Analysis and Design

Benjamin Kenwright

Version Control

Example

Team Princess
3 Members

3 Github Users

e.g.,

Elva1997,

michelle0924hhx,

KimJaeHwang

Each user can join and have lots of repositories.

All members of the common team repository

https://github.com/princess2017

Outline

Review

What do we mean by

Notation?

UML Diagrams

Examples of Notation in

Analysis and Design

Summary/Discussion

Conclusion

Revision Question

Requirements analysis is critical to the

success of a development project.

a) True

b) False

c) Depends upon the size of project

Answer

Answer a)

Explanation: Requirements must be

actionable, measurable, testable, related

to identified business needs or

opportunities, and defined to a level of

detail sufficient for system design

Question

Requirements should specify ‘what’ but

not ‘how’.

a) True

b) False

Answer

Answer: a)

Explanation: ‘What’ refers to a system’s

purpose, while ‘How’ refers to a system’s

structure and behavior.

Diagrams

Drawing a diagram does not

constitute analysis or design

However, diagrams provide

visual aids

Clarifying the concept

Various forms, e.g., 3d-

software, whiteboards,

napkins, and the backs of

envelopes

The Unified Modeling

Language (UML)

Primary modeling language used to

analyze, specify and design software

systems

UML is used to model (i.e., represent)

the system being built

UML has Many Types

Of Diagrams

UML
Unified Modeling Language (UML): is a standardized
general-purpose modeling language in the field of
object-oriented software engineering. The standard
is managed and was created by the Object
Management Group (OMG)

UML includes a set of graphic notation techniques
to create visual models of object-oriented software-
intensive systems.

UML defines different types of diagrams: class
(package), object, use case, sequence,
collaboration, activity, component, and deployment.

UML has various types of diagrams divided into two
main categories

UML Diagrams

UML Diagrams

Two UML Views

of System Model
Static (or structural) view: emphasizes the
static structure of the system using objects,
attributes, operations and relationships. It
includes class diagrams and composite
structure diagrams.

Dynamic (or behavioral) view: emphasizes
the dynamic behavior of the system by showing
collaborations among objects and changes to
the internal states of objects. This view includes
sequence diagrams, activity diagrams and state
machine diagrams

Two UML Views

of the System Model

Structure Diagrams

Package Diagram

Component Diagram

Deployment Diagram

Composite Structure
Diagrams

Class Diagram

Sequence Diagram

Object Diagrams

Behavior Diagrams

Use Case Diagram

Activity Diagram

State Machine Diagrams

Interaction Diagrams

Communication Diagrams

Interaction Overview
Diagrams

Timing Diagrams

Question

Is a “Class Diagram” a static or dynamic

system model view?

a) Static (or Structural)

b) Dynamic (or Behavioral)

Answer

a) Static (or Structural)

Activity

Write down as many UML diagram

views as you can remember

Also state if they’re Static (Structural) or

Dynamic (Behavioral)

Structure Diagrams

Structure diagrams emphasize the things that
must be present in the system being modelled

Since structure diagrams represent the
structure, they are used extensively in
documenting the software architecture of
software systems.

For example, the component diagram
describes how a software system is split up into
components and shows the dependencies
among these components.

Behavior Diagrams

Behavior diagrams emphasize what must

happen in the system being modelled

Since behavior diagrams illustrate the

behavior of a system, they are used

extensively to describe the functionality of

software systems

As an example, the activity diagram

describes the business and operational

step-by-step activities of the components

in a system

Plan

Review diagrams in an order in which

one might typically develop them

i.e., instead of reviewing all the structural

and then behavioral diagrams seperately

Package Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams

Package Diagram

A package diagram provides the means to
organize the artifacts of the development
process to clearly present the analysis of
the problem space and the associated
design

The specific reasons will be varied but will
either focus on physically structuring the
visual model itself or on clearly
representing the model elements through
multiple views

Problem
(Rational for Package Diagrams)

At the beginning of the project, you only
have a limited number of components and
everything is simple and beautiful

However, when time flies, more and more
components have been created and they
start to become unmanageable

As a result, your project becomes hard to
navigate and components become difficult
to locate when you want to review or make
changes

Package Diagrams

to the Rescue

How can we fix this problem?

We can make use of Package Diagrams

to organize the components into

different packages

This helps us categorizing our

components according to their natures,

making them easier to navigated and

locate

Visibility

Public (+) Visible to elements within its

containing package, including

nested packages, and to external

elements

Private (-) Visible only to elements

within its containing package and to

nested packages

Example

Dependencies between UML

elements (including Packages)

Notations for the different types of

relationships are as follows

Example

Component Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams

Component Diagram

A component diagram shows the internal

structure of components and their

dependencies with other components

This diagram provides the representation of

components, collaborating through well-

defined interfaces, to provide system

functionality

Component Notation

Component is a structured classifier, its

detailed assembly can be shown with a

composite structure using

Parts

Ports, and

Connectors

Example

A Component’s Internal

Structure

Deployment Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams

Deployment Diagram

A deployment diagram is used to show

the allocation of artifacts to nodes in the

physical design of a system.

A single deployment diagram represents

a view into the artifact structure of a

system.

The three essential elements of a

deployment diagram are artifacts,

nodes, and their connections.

Example

Question

The three essential elements of a

deployment diagram are:

a) nodes, connections and their elements

b) artifacts, nodes, and their connections

c) elements, relationships and connectors

d) inheritance, relationships and connectors

Answer

b) artifacts, nodes, and their connections

Use Case Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams

Use Case Diagrams

Use case diagrams are used to depict

the context of the system to be built and

the functionality provided by that

system.

They depict who (or what) interacts with

the system.

They show what the outside world

wants the system to do.

Example

Activity Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams

Activity Diagram

Activity diagrams provide visual

depictions of the flow of activities,

whether in a system, business,

workflow, or other process

These diagrams focus on the activities

that are performed and who (or what) is

responsible for the performance of

those activities.

Example

Class Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams

Class Diagram

A class diagram is used to show the
existence of classes and their relationships
in the logical view of a system

During analysis, class diagrams indicate
the common roles and responsibilities of
the entities that provide the system’s
behavior

During design, class diagrams capture the
structure of the classes that form the
system’s architecture

Visibility

Public (+) Visible to any element that

can see the class

Protected (#) Visible to other elements

within the class and to subclasses

Private (-) Visible to other elements

within the class

Package (~) Visible to elements within

the same package

Diagrammatic Representation

of a Class

Example

UML Diagrams

Package Diagrams

Component Diagrams

Deployment Diagrams

Use Case Diagrams

Activity Diagrams

Class Diagrams

Sequence Diagrams

Interaction Overview Diagrams

Composite Structure Diagrams

State Machine Diagrams

Timing Diagrams

Object Diagrams

Communication Diagrams Next Week

Remember

The limitations of UML are the same as

any form of communication

The simpler your language, the fewer

things you can communicate and the

clearer your communications will become

A shape like a square or circle identifies a

structure, a line indicates relationship, an

arrow indicates movement, or flow

Summary

Fundamentals of Notation in

Object Orientated Analysis

and Design

Specifically UML and the

Different Models/Diagrams

Designing is not the act of

drawing a diagram; a

diagram simply captures a

design

This Week

Review Slides

Read Chapters 5 and 6

Online Quizzes

Version Control (GitHub)

Questions/Discussion

