# Notation Part 2

**Object Orientated Analysis and Design** 

Benjamin Kenwright

# Outline

#### Review

- What do we mean by Notation and UML?
- Types of UML View
- Continue UML Diagram Types
- Conclusion and Discussion
- Summary

#### **Revision Question**

# Write down the UML Class Diagram visibility attributes:

Public \_

Private \_\_\_\_

Protected \_\_\_\_

Package

Public (+) Visible to any element that can see the class

- Protected (#) Visible to other elements within the class and to subclasses
- Private (-) Visible to other elements within the class
- Package (~) Visible to elements within the same package

#### **Revision Question**

Draw the notations for the different types of relationships

Dependency ----->
Association
Direct Association
Inheritance
Realization
Aggregation

| Dependency         | k                 |
|--------------------|-------------------|
| Association        |                   |
| Direct Association | >                 |
| Inheritance        | $\longrightarrow$ |
| Realization        | ·····>            |
| Aggregation        | $\longrightarrow$ |

#### Question

Is an "Activity Diagram" a static or dynamic system model?

- a) Static (Structural)
- b) Dynamic (Behavioral)

b) Dynamic (Behavioral)

# Revision Question List the various UML Diagram Types





#### Question

#### What type of Diagram is this:



#### Component Diagram

A component diagram shows the internal structure of components and their dependencies with other components

#### Question

Draw a simple Activity Diagram?

Activity diagrams provide visual depictions of the flow of activities, whether in a system, business, workflow, or other process



#### Example

#### Review

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

Last Week

#### Sequence Diagrams

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

#### Sequence Diagram

A sequence diagram traces the execution of a scenario in the same context as an object diagram. To a large degree, a sequence diagram is simply another way to represent an object diagram

#### Example



# Interaction Overview Diagrams

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

#### Interaction Overview Diagram

Interaction overview diagrams are a combination of activity diagrams and interaction diagrams

Intended to provide an overview of the flow of control between interaction diagram elements

#### Example





## Composite Structure Diagrams

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

#### Composite Structure Diagram

- Composite structure diagrams provide a way to depict a structured classifier with the definition of its internal structure.
- This internal structure is comprised of parts and their interconnections, all within the namespace of the composite structure.

#### Example



The Composite Structure Diagram for WaterTank

## State Machine Diagrams

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

#### State Machine Diagram

- A state machine diagram is used to design and understand time-critical systems
- A state machine diagram expresses behavior as a progression through a series of states, triggered by events, and the related actions that may occur
- These are also known as behavioral state machines

#### Example



States and Transition Events for the Duration Timer

# **Timing Diagrams**

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

# **Timing Diagrams**

- Timing diagrams are a type of interaction diagram
- Their purpose is to show how the states of an element or elements change over time and how events change those states

#### Example



# **Object Diagrams**

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

#### **Object Diagram**

- An object diagram is used to show the existence of objects and their relationships in the logical design of a system
- Stated another way, an object diagram represents a snapshot in time of an otherwise transitory stream of events over a certain configuration of objects.

#### Example



**Object Relationships** 

#### **Communication Diagrams**

- Package Diagrams
- Component Diagrams
- Deployment Diagrams
- Use Case Diagrams
- Activity Diagrams
- Class Diagrams
- Sequence Diagrams
- Interaction Overview Diagrams
- Composite Structure Diagrams
- State Machine Diagrams
- Timing Diagrams
- Object Diagrams
- Communication Diagrams

#### **Communication Diagram**

A communication diagram is a type of interaction diagram that focuses on how objects are linked and what messages they pass as they participate in a specific interaction

#### Example



Communication Diagram for the Hydroponics Gardening System

# Summary

 Clear idea of Notation in Object Orientated Analysis and Design
 Visualising System
 UML Diagrams (Types)
 UML Diagrams





#### This Week

Review Slides
 Read Chapter 6
 Online Quizzes
 Version Control (GitHub)

#### **Questions/Discussion**

Research Task
What was the first object-oriented language?

#### **Revision Question**

Name any three object oriented programming languages?

Example, C++, java, small talk and C# are most popular object oriented programming languages.

#### Question

What do we mean by data hiding?

- Data hiding or encapsulation, is the mechanism in which implementation details of a class are kept hidden from the user (or external world)
- For example, data hiding concept is supported using the pubic, protected and private keywords which are placed in the declaration of the class

#### Question

Briefly summarize the importance of using inheritance

- Inheritance is one of the most powerful features of object oriented programming. Most important advantages of inheritance are:
- Reusability
- Saves times and efforts
- Closeness with the real world
- Easy modification
- Transitive Nature of inheritance

#### Question

What do you mean by overloading of a function? When do you use this concept? Give an example of function overloading?

Function overloading is a technique where several function declarations are specified with a same name that can perform similar tasks, but on different data types (distinguished by their number and type of arguments)

Example
 int add (int a, int b);
 int add (int a, int b, int c);
 float add (float a, float b);

Hence, overloaded functions perform different activities depending upon the kind of data sent to them

#### Question

#### List the difference between Polymorphism and Overloading?

#### Polymorphism

Polymorphism is an important concept of OOPS.

Polymorphism means ability of one object to take many different forms.

Two main types of polymorphism:

Runtime polymorphism

Compile time polymorphism

#### Overloading

Overloading is the mechanism to implement polymorphism. Overloading is the mechanism to use the

same thing for different purposes.