
Processes
Object Orientated Analysis and Design

Benjamin Kenwright

Outline

Review

What are Processes?

Why are they important in Object

Orientated Analysis and Design

Conclusion and Discussion

Summary

Revision Question

An object is an entity that has:

a) state, action, dependencies

b) behavior, state, identity

c) behaviour, action, state

d) class, state, memory

Answer

b) behavior, state, identity

Revision Question

Write down the four elements that

Inherent Complexity derives from?

(5 Minutes)

Answer

Inherent Complexity derives from four

elements:

1.complexity of the problem domain

2.difficulty of managing the development

process

3.flexibility possible through software

4.problems of characterizing the behavior

of discrete systems

Revision Question

Which of the following is the

functionality of ‘Data Abstraction’?

A. Reduce Complexity

B. Binds together code and data

C. Parallelism

D. None of the mentioned

Answer

A. Reduce Complexity

Explanation: An essential element of

Object Oriented Programming is ‘Data

Abstraction’ which means hiding things.

Complexity is managed through

abstraction.

Revision Question

Draw the notations for the different

types of relationships

Answer

Revision Question

List the various UML Diagram Types

Answer

Question

Draw an example of a State Machine

Diagram

Answer

A state machine diagram expresses
behavior as a progression through a series
of states, triggered by events, and the
related actions that may occur

Question

Does a method or tool exist which

promises to make software

development a trivial task?

a) True

b) False

Answer

b) False

A professional software engineer know

that no such panacea exists.

Traits of Successful

Projects

Existence of a strong architectural

vision

Application of a well-managed iterative

and incremental development

lifecycle

Note there are other traits of a successful project – however, we focus on just two main principles

Strong Architectural Vision

Fundamental organization of a system

embodied in its components, their

relationships to each other, and to the

environment, and the principles guiding

its design and evolution

Conceptual integrity

Clean internal structure

Understandability

Attributes of Good

Software Architectures
Well-defined layers of abstraction
Each layer representing a coherent abstraction

Provides well-defined and controlled interface

Built on well-defined and controlled facilities
at lower levels of abstraction

Clear separation of concerns between the
interface and implementation of each layer
Makes it possible to change the implementation of

a layer without violating the assumptions made by
its clients

Architecture is simple
Common behavior is achieved through common

abstractions and common mechanisms

Iterative and Incremental

Lifecycle

Incremental Approach

The Incremental Approach uses a set

number of steps and development goes

from start to finish in a linear path of

progression.

Incremental

Incremental development is done in

steps from design, implementation,

testing/verification, maintenance. These

can be broken down further into sub-

steps but most incremental models

follow that same pattern. The Waterfall

Model is a traditional incremental

development approach.

http://en.wikipedia.org/wiki/Waterfall_model

Iterative Approach

Iterative Approach has no set number

of steps, rather development is done in

cycles

Iterative

Iterative development is less concerned

with tracking the progress of individual

features. Instead, focus is put on

creating a working prototype first and

adding features in development cycles

where the Increment Development

steps are done for every cycle. Agile

Modeling is a typical iterative approach.

http://en.wikipedia.org/wiki/Agile_Modeling

Analogy of

Incremental vs Iterative

If you were writing an essay under

the Incremental Model, you'd attempt

to write it perfectly from start to

finish one sentence at at time. If you

wrote it under the Iterative Model,

you'd bang out a quick rough draft

and work to improve it through a set

of revision phases

Question

Which development approach is the the

waterfall model?

a) incremental development approach

b) iterative development approach

c) static development approach

d) behavioral development approach

Answer

a) incremental development approach

Heart of Software Engineering

Iterative and incremental approach are at
the heart of most modern software
development methods, including agile
methods like:

Extreme Programming (XP)

SCRUM

Most importantly are extremely well suited
to the object-oriented paradigm and offers
a number of benefits relative to risk
management

Trends

Iterative approach is common practice
because it better fits the natural path of
progression in software development

Instead of investing a lot of time/effort
chasing the 'perfect design' based on
assumptions, the iterative approach is all
about creating something that's 'good
enough' to start and evolving it to fit the
user's needs

Discussion

When would you use an Iterative or

Incremental approach?

Plan-Driven vs Agile

Agile
Tight Cycles and Small Increment

Waterfall

(Plan-Driven)
Incremental Agile-XP

Agile Processes

Primary goal is to deliver a system to

the customer that meets their current

needs in the shortest amount of time

Agile Characteristics

Lightweight and sparse, less ceremony

Reliant on the tacit knowledge of the team
members

Tactically focused rather than strategic

Iterative and incremental

Heavily reliant on customer collaboration

Self-organizing and managing

Emergent as opposed to predetermined

Plan-Driven Characteristics

More heavyweight, more ceremony

Reliant on well-documented processes

Strategically focused rather than tactically
focused

Reliant on a customer contract

Managed and controlled

Defined up front and then continually
improved

Project is small

Experienced teams with a wide

range of abilities take part

Teams are self-starters, independent

leaders and others who are self-

directing

Project is an in-house project and

the team co-located

System is new with lots of unknowns

Requirements must be discovered

Requirements and environment are

volatile with high change rates

End-user environment is flexible

Relationship with customer is close

and collaborative

Customer is readily available

dedicated and co-located

High trust environment exists within

the development teams and

customer

Rapid value and high-

responsiveness are required

Project is large

Teams include varied capabilities and

skill sets

Teams are geographically distributed

and/or outsourced

Project is of strategic importance

System is well understood (scope

and features set)

Requirements are fairly stable

System is large and complex (critical

safety/high reliability requirements)

Project stakeholders have a weak

relationship with the development

team

External legal concerns

Focus is on a strong, quantitative

process improvement

Definition and management of

process are important

Predictability and stability of process

are important

Agile Plan-Driven

Software Development

Lifecycle (SDLC)

Software Development

Lifecycle

Controlling framework

Guide for the overall development of the

system

ultimately leading to the final product

Selection

Plethora of software development

lifecycle styles available

For example, Rational Unified Process

(RUP), XP, SCRUM, Crystal, ...

Selection of a lifecycle style directly

affects the size and shape of the

process

Five Process Areas

1. Requirements

2. Analysis and Design

3. Implementation

4. Testing

5. Deployment

Throughout the Lifecycle

Project Management
Manage the software development project,

including:
• planning, staffing, and monitoring the project, as

well as managing the risks

Configuration and Change Management
Identify and control change

Environment
Software development environment, including

teams, tools, and support

Process Disciplines

Relative Order

Iterative Nature

Process Milestones,

Phases and Iterations

Phases in Agile Methods

The XP lifecycle includes five phases

1. Exploration: Determine feasibility, understand key
“stories” for the first release, and develop
exploratory prototypes

2. Planning: Agree on the date and stories for the
first release

3. Iterations to release: Implement and test selected
stories in a series of iterations. Refine the iteration
plan

4. Productionizing: Prepare supporting materials
(documentation, training, marketing), and deploy
the operational system

5. Maintenance: Fix and enhance the deployed
system

SCRUM lifecycle includes four phases.

1. Planning: Establish the vision, set
expectations, secure funding, and develop
exploratory prototypes

2. Staging: Prioritize and plan for the first
iteration. Develop exploratory prototypes

3. Development: Implement requirements in a
series of sprints, and refine the iteration plan

4. Release: Prepare supporting materials
(documentation, training, marketing), and
deploy the operational system

Phases in Agile Methods

Duration

Iteration is pretty much the same across
most software development methods

XP recommends that iterations be one or
two weeks long, if possible

SCRUM specifies that all iterations
(sprints) should be 30 days long

RUP recommends that iterations be two to
six weeks long

Micro Process

Overall software development process

(the macro process)

Micro Process covers the analysis and

design process by looking at what

activities are performed and what work

products are produced

Micro Process within Macro Process

Levels of Abstraction

Micro process, the traditional phases of

analysis and design are intentionally

blurred and instead are performed at

different levels of abstraction along a

continuum

Vary Focus of Analysis and Design

Depending on Perspective

Activities

Identify the elements

Define the

collaborations

between the elements

Define the relationship

between elements

Define the semantics

of the elements

Review

Review Six Common Software

Development Lifecycles (SDLC)

Waterfall Model

V-Shaped Model

Evolutionary Prototyping Model

Spiral Method (SDM)

Iterative and Incremental Method

Agile development

Waterfall Model

Linear sequential flow

Projects which do not

have changing

requirements

V-Shaped Model

Difference

between V-shaped

model and

waterfall model is

the early test

planning in the V-

shaped model

Prototyping Model

Activity of creating prototypes

(Throwaway prototyping)

Spiral Model (SDM)

Combines elements
of both design and
prototyping-in-stages

Features from
prototyping model
and the waterfall
model

Favored for large,
expensive, and
complicated projects

Iterative and

Incremental Model

Starts with an initial planning and

ends with deployment with the cyclic

interactions in between

Agile Model

Based on iterative and incremental

development, where requirements and

solutions evolve through collaboration

between cross-functional teams

Summary

Clear idea of Processes in Object

Orientated Analysis and Design

Iterative and incremental development

lifecycle

Software development process framework

(Software Development Lifecycle)

waterfall, iterative, agile, plan-driven, and so

on

This Week

Review Slides

Read Chapter 7

Online Quizzes

Crossword Challenge

Crossword Challenge

Questions/Discussion

Question

Having the most suitable process model

will justify success of the project

(Explain your answer)

a) True

b) False

Answer

b) False

There are a lot of factors that need to be
considered for a successful software
project, for example, requirement analysis
is the most critical phase of software life-
cycle, the skills of the project team and
project manager, the quality of the
deliverables, the used technologies, and
so forth

