
Java Basics
Object Orientated Programming in Java

Benjamin Kenwright

Outline

Essential Java Concepts

Syntax, Grammar, Formatting, …

Introduce Object-Orientated Concepts

• Encapsulation, Abstract Data, OO

Languages,…

Today’s Practical

Review/Discussion

Last Week

Compile Java Programs

Javac.exe/Java.exe

Setup IDE

Basic Programs

Hello World

Simple Debugging

e.g., Program entry point, hello worlds, print
out (println..)

Read Chapters 1 & 2

Question

Java is case sensitive?

A. True

B. False

Answer

A. True

Question

What will be output of x in following code?
"class Test{ public static void main(String[]
args) { int x = 1; if (x == 1) { x = x + 1} } }"

A. 0

B. 1

C. 2

D. 3

E. Compile Error

Answer

E. Compile Error

Missing semi-colon (;)

C:\pro\zjnu2017.github.io\OOP\exa

mples

Question

What will be output of x in following code?
"class Test{ public static void main(String[]
args) { int x = 1; if (x == 1) { x = x + 1;} } }"

A. 0

B. 1

C. 2

D. 3

E. Compile Error

Answer

C. 2

Today

Exercises from Chapters 2, 4, 5 and 6

Data types (boolean, int, string, ..)

Loops (while, for, …)

Conditional Logic (if, else, switch, ..)

Math libraries

Arrays

Methods (calling and passing parameters)

Pure Object-Oriented Language

Everything is an object

A program is a set of objects telling each

other what to do by sending messages

Each object has its own memory (made up

by other objects)

Every object has a type

All objects of a specific type can receive

the same messages

Java breaks some of these rules in the name of efficiency

Object Concept

An object is an encapsulation of data

An object has

identity (a unique reference),

state, also called characteristics

behavior

An object is an instance of an abstract
data type

An abstract data type is implemented via a
class

Abstract Data Type (ADT)

An ADT is a collection of objects (or values)
and a corresponding set of methods

An ADT encapsulates the data representation
and makes data access possible at a higher
level of abstraction

Example 1: A set of vehicles with operations
for starting, stopping, driving, get km/litre, etc

Example 2: A time-interval, start time, end
time, duration, overlapping intervals, etc

Encapsulation and Information

Hiding
Data can be encapsulated such that it is

invisible to the "outside world"

Data can only be accessed via methods

Encapsulation and Information

Hiding
What the "outside world" cannot see it cannot
depend on!

“Wall" between the object and the "outside world"

The hidden data and methods can be changed
without affecting the "outside world"

Class vs. Object

Class

A description of the

common properties

of a set of objects

A concept

A class is a part of

a program

Example 1: Person

Example 2: Album

Object

A representation of the
properties of a single
instance

A phenomenon

An object is part of data
and a program
execution

Example 1: Bill Clinton,
Bono, Viggo Jensen

Example 2: A Hard
Day's Night, Joshua
Tree

Type and Interface

An object has type and an interface

To get an object: Account a = new Account()

To send a message: a.withdraw()

Instantiating Classes

An instantiation is a mechanism where objects
are created from a class

Always involves storage allocation for the object

A mechanism where objects are given an initial
state

Static Instantiating

In the declaration
part of a program

A static instance is
implicitly created

Dynamic Instantiating

In the method part of a
program

A dynamic instance is
created explicitly with a
special command

Interaction between Objects

Interaction between objects happens by
messages being send
A message activates a method on the calling

object

An object O1 interacts with another object
O2 by calling a method on O2
“O1 sends O2 a message”

The call of a method corresponds to a
procedure call in a non object-oriented
language such as C or Pascal

Aggregation and

Decomposition

A decomposition splits a single concept

into a number of (sub-)concepts

An aggregation consists of a number of

(sub-)concepts which collectively is

considered a new concept

Aggregation and

Decomposition, Example

Idea: make new objects by combining
existing objects

Reusing the implementation

Generalization and

Specialization
Generalization creates a concept with a broader
scope

Specialization creates a concept with a narrower
scope

Reusing the interface

Generalization and

Specialization, Example

Inheritance: get the interface from the general
class

Objects related by inheritance are all of the
same type

Code Example
Polymorphism: One piece of code works
with all shape objects

Dynamic binding: How polymorphism is
implemented

Structuring by Program or

Data?
What are the actions of the program vs.
which data does the program act on

Top-down: Stepwise program refinement

Bottom-up: Focus on the stable data parts
then add methods

Object-oriented programming is bottom-
up. Programs are structure with outset in
the data

C and Pascal programs are typically
implemented in a more top-down fashion

Review Java Program Structure

Java Class Example Car

Question

Is Java a `top-down’ or `bottom-up’

programming language?

A. `top-down’

B. `bottom-up’

Answer

B. `bottom-up’

Object-oriented programming is bottom-up.
Programs are structure with outset in the data

In OOP, you first write a base class, and
constantly derive new child classes from the
existing base one (like a Car class will probably
derive from a class called Vehicle). So, you start
from the basic blocks and go on making it a more
complex design.

Byte Code vs. Executable

Difference from C/C++

Everything resides in a class
variables and methods

Garbage collection

Error and exception handling

No global variables or methods

No local static variables

No separation of declaration and implementation
(no header files).

No explicit pointer operations (uses references)

No pre-processor (but something similar)

Has fewer "dark corners"

Has a much larger standard library

Question

What displays from the following statements?
String word = "abcde"; for (int i = 0; i <4; i+=2)
System.out.print(word.charAt(i));

A. ab

B. ac

C. ace

D. bd

// access characters in a String using charAt(i)
similar to word[i] in C language

Answer

B. ac

Review Concepts
Classes are "recipes" for creating objects

All objects are instances of classes

An ADT is implemented in a class

Aggregation and decomposition
“has-a” relationship

Generalization and specialization
“is-a” or “is-like-a” relationship

Encapsulation
Key feature of object-oriented programming

Separation of interface from implementation

It is not possible to access the private parts of
an object

This Week

Read Chapters 3, 4, 5, 6

Review Slides

Complete Java Chapter Exercises

Practical Exercises

Submit Exercises

Review `Quizzes’

Summary

Overview Essential Java Language

Principles

Hands-On/Practical

Today is about becoming

comfortable/familiar with Java and the

Programming Syntax/Concepts

Questions/Discussion

Submit Exercise Questions

2.1 to 2.12

Single .zip file with your student number

Remember to comment your code,
name/student number at the top of files,
separate file for each exercise

ch2_1.java, ch2_2.java, …

