
Inheritance and

Interfaces
Object Orientated Programming in Java

Benjamin Kenwright

Outline

Review

What is Inheritance?

Why we need Inheritance?

Syntax, Formatting, ..

What is an Interface?

Today’s Practical

Review/Discussion

Inheritance

Reuse

Inheritance and methods

Method redefinition

The final keyword

Comparison of inheritance with other

approaches and examples

How to Reuse Code?

Write the class completely from scratch (one
extreme)

What some programmers always want to do!

Find an existing class that exactly match your
requirements (another extreme)

The easiest for the programmer!

Built it from well-tested, well-documented
existing classes

A very typical reuse, called composition reuse!

Reuse an existing class with inheritance

Requires more knowledge than composition reuse

Inheritance

Inheritance is a way to derive a new class

from an existing class

It is the process where one object

acquires the properties of another. With

the use of inheritance the information is

made manageable in a hierarchical order

Module Based vs. Object Oriented

Module Based vs. Object Oriented

Class C4 is created by copying
C3

There are C3 and C4 instances

Instance of C4 have all C3
properties

C3 and C4 are totally separated

Maintenance of C3 properties
must be done two places

Languages, e.g., Ada, Modula2,
PL/SQL

Class C4 inherits from C3

There are C3 and C4 instances

Instance of C4 have all C3
properties

C3 and C4 are closely related

Maintenance of C3 properties
must be done in one place.

Languages, C++, C#, Java,
Smalltalk

Question

Inheritance is a way to derive a new

class from an existing class

a) True

b) False

Answer

a) True

Composition vs. Inheritance

Inheritance in Java

(Syntax)

Inheritance Example

Instantiating and Initialization

The Square, that inherits from Rectangle,

that inherits from Shape is instantiated as

a single object, with properties from the

three classes Square, Rectangle, and

Shape

Inheritance and Constructors
Constructors are not inherited

A constructor in a subclass must initialize variables
in the class and variables in the superclass
What about private fields in the superclass?

It is possible to call the superclass' constructor in a
subclass
Default superclass constructor called if exists

Order of Instantiation and

Initialization

The storage allocated for the object is
initialized to binary zero before anything else
happens

Static initialization in the base class then the
derived classes

The base-class constructor is called (all the
way up to Object)

Member initializers are called in the order of
declaration

The body of the derived-class constructor is
called

Inheritance and Constructors,

cont.

Interface to Subclasses

and Clients

1. The properties of C3
that clients can use

2. The properties of C3
that C4 can use

3. The properties of C4
that clients can use

4. The properties of C4
that subclasses of C4
can use

Question

All methods are inherited including the

constructors?

a) True

b) False

Answer

b) False

Constructors are not inherited

“Protected” Revisited

It must be possible for a subclass to access

properties in a superclass

private will not do, it is to restrictive

public will not do, it is to generous

A protected variable or method in a class can

be accessed by subclasses but not by clients

Change access modifiers when inheriting

Properties can be made “more public”

Properties cannot be made “more private”

“Protected” Revisited

“Protected” Example

Class Hierarchies in General

Class hierarchy: a set of classes related by
inheritance

Possibilities with inheritance
Cycles in the inheritance hierarchy is not allowed

Inheritance from multiple superclass may be
allowed

Inheritance from the same superclass more than
once may be allowed

Class Hierarchies in Java

Class Object is the root of the inheritance
hierarchy in Java

If no superclass is specified a class
inherits implicitly from Object

If a superclass is specified explicitly the
subclass will inherit Object

Question

A protected variable or method in a class

cannot be accessed by subclasses but not

by clients

a) True

b) False

Answer

False

A protected variable or method in a class

can be accessed by subclasses but not

by clients

Method/Variable Redefinition

Redefinition: A method/variable in a subclass

has the same name as a method/variable in

the superclass

Redefinition should change the implementation

of a method, not its semantics

Redefinition in Java class B inherits from class

A if

Method: Both versions of the method is available in

instances of B. Can be accessed in B via super

Variable: Both versions of the variable is available

in instances of B. Can be accessed in B via super

Upcasting

Treat a subclass as its superclass

Central feature in object-oriented program

The final Keyword

Fields
Compile time constant (very useful)

final static double PI = 3.14

Run-time constant (useful)

final int RAND = (int) Math.random * 10

Arguments (not very useful)
double foo (final int i)

Methods
Prevents overwriting in a subclass (use this very

carefully)

Private methods are implicitly final

Final class (use this very carefully)
Cannot inherit from the class

Question

Which of these keywords can be used

to prevent inheritance of a class?

a) super

b) constant

c) Class

d) final

Answer

d) final

Review

Reuse

Use composition when ever possible more flexible
and easier to understand than inheritance

Java supports specialization and extension via
inheritance

Specialization and extension can be combined.

A subclass automatically gets the fields and
method from the superclass

They can be redefined in the subclass

Java supports single inheritance, all have
Object as superclass

Designing good reusable classes is (very) hard!

while(!goodDesign()){ reiterateTheDesign(); }

Question

Which of these classes is a superclass

of every class in Java?

a) String class

b) Object class

c) Abstract class

d) ArrayList class

Answer

b) Object class

Method Combination

It is programmatically controlled

Method doStuff on A controls the activation of doStuff
on B

Method doStuff on B controls the activation of doStuff
on A

Imperative method combination

There is an overall framework in the run-time
environment that controls the activation of doStuff
on A and B

doStuff on A should not activate doStuff on B, and
vice versa

Declarative method combination

Java supports imperative method combination

Changing Parameter and

Return Types

class S {

void sMethod() { System.out.print("sMethod"); }

}

class T extends S {

void tMethod() { System.out.print("tMethod"); }

}

class A {

void doStuff(S x) { System.out.print("doStuff(S x)"); }

}

class B extends A {

void doStuff(T x) {

System.out.print("doStuff(T x)");

x.tMethod();

} }

class Test

{ public static void main(String[] args)

{

A a1 = new A();

B b1 = new B();

S s1 = new S();

a1 = b1;

a1.doStuff(s1);

} }

Question

What would the following

program output?

a) "sMethod“

b) “tMethod”

c) “doStuff(S x)”

d) “doStuff(T x)”

e) Nothing

Answer

c) “doStuff(S x)”

Question

Java supports multiple inheritance and

all objects are superclasses

a) True

b) False

Answer

b) False

Java supports single inheritance, all have

Object as superclass

Java's interface Concept

Java's interface Concept,

cont.

Java's interface Concept

An interface is a collection of method
declarations
An interface is a class-like concept

An interface has no variable declarations or method
bodies

Describes a set of methods that a class can be
forced to implement

An interface can be used to define a set of
“constant”

An interface can be used as a type concept.
Variable and parameter can be of interface types

Interfaces can be used to implement multiple
inheritance like hierarchies

Java's interface Concept

Java's interface Concept, cont

Question

An interface is allowed variable

declarations but no method

implementations

a) True

b) False

Answer

b) False

interface has no variable declarations or

method bodies

Multiple Inheritance

Multiple inheritance of implementations is not
allowed. Components can inherit multiple
interfaces, though

Inheriting multiple interfaces isn't problematic,
since you're simply defining new method
signatures to be implemented. It's the
inheritance of multiple copies of functionality
that is traditionally viewed as causing problems,
or at the very least, confusion

Semantic Rules for Interfaces
Type
An interface can be used as a type, like classes

A variable or parameter declared of an interface type
is polymorph

• Any object of a class that implements the interface can be
referred by the variable

Instantiation
Does not make sense on an interface

Access modifiers
An interface can be public or “friendly” (the default)

All methods in an interface are default abstract and
public

• Static, final, private, and protected cannot be used.

All variables (“constants”) are public static final by
default

• Private, protected cannot be used

Some of Java's Most used Interfaces

Iterator
To run through a collection of objects without knowing how

the objects are stored, e.g., in array, list, bag, or set.

More on this in the lecture on the Java collection library

Cloneable
To make a copy of an existing object via the clone()

method on the class Object

More on this topic in todays lecture

Serializable
Pack a web of objects such that it can be send over a

network or stored to disk. An naturally later be restored as
a web of objects

More on this in the lecture on Java's I/O system

Comparable
To make a total order on objects, e.g., 3, 56, 67, 879,

3422, 34234

The Iterator Interface
The Iterator interface in the package java.util

is a basic iterator that works on collections.

The Cloneable Interface

A class X that implements the

Cloneable interface tells clients that X

objects can be cloned

The interface is empty, i.e., has no

methods

Returns an identical copy of an object.

A shallow copy, by default.

A deep copy is often preferable.

The Cloneable Interface,

Example

The Serializable Interface
A class X that implements the Serializable interface
tells clients that X objects can be stored on file or
other persistent media

The interface is empty, i.e., has no methods

The Comparable Interface

In the package java.lang

Returns a negative integer, zero, or a positive

integer as this object is less than, equal to, or

greater than the specified object

The Comparable Interface,

Example

Interface vs. Abstract Class

Interface

Methods can be
declared

No method bodies

“Constants” can be
declared

Has no constructors

Multiple inheritance
possible

Has no top interface

Multiple “parent”
interfaces

Abstract Class

Methods can be declared

Method bodies can be
defined

All types of variables can
be declared

Can have constructors

Multiple inheritance not
possible

Always inherits from
Object

Only one “parent” class

Interfaces and Classes Combined

Using interfaces objects do not reveal which

classes the belong to

With an interface it is possible to send a message

to an object without knowing which class(es) it

belongs. The client only knows that certain

methods are accessible

By implementing multiple interfaces it is possible

for an object to change role during its life span.

Design guidelines

Use classes for specialization and generalization

Use interfaces to add properties to classes

Review

Purpose: Interfaces and abstract classes

can be used for program design, not just

program implementation

Java only supports single inheritance

Java “fakes” multiple inheritance via

interfaces

Very flexible because the object interface is

totally separated from the objects

implementation

Summary

Overview of Inheritance and Interfaces

Hands-On/Practical to help gain a solid

understanding of these concepts

Today is about becoming

comfortable/familiar these core Object

Orientated Principles (i.e., Inheritance

and Interfaces)

Today’s Practical

Programming Exercises (Book):
Chapter 11.1-11.5 (Only code not UML)

Upload single .zip file containing all your java
files (only java files).
www.zjnu.xyz

zip file name should be your student number, e.g.,
29392929.zip

Remember to comment your code,
name/student number at the top of files.

Organise your files so it’s clear to identify each
exercise (e.g., file names/folders)

http://www.zjnu.xyz/

This Week

Read Associated Chapters

Review Slides

Java Exercises

Submit Exercise Online

Online Quizzes

Additional quizzes added each week

Questions/Discussion

Demonstrate your ability to use the

IDE/Java in the practical

Eclipse

Practical/Submission

Attendance Sheet

