
Polymorphism
Object Orientated Programming in Java

Benjamin Kenwright



Quizzes/Labs

Every single person should have done 

Quiz 00 – Introduction

Quiz 01 - Java Basics

Every single person should have at 

least submitted an attempt at the 

exercises



Outline

Why use polymorphism?

Upcast (and downcast)

Static and dynamic type

Dynamic binding

Polymorphism

A polymorphic field (the state design 
pattern)Today’s Practical

Review/Discussion

Summary



Question

Which of these keyword must be used 

to inherit a class?

a) super

b) this

c) extent

d) extends



Answer

d) extends



Question

Which of these keywords is used to 
refer to member of base class from a 
sub class?

a) upper

b) super

c) this

d) None of the mentioned



Answer

Answer: b)

Explanation: whenever a subclass needs 

to refer to its immediate superclass, it can 

do so by use of the keyword super.



Question

A class member declared protected 
becomes member of subclass of which 
type?

a) public member

b) private member

c) protected member

d) static member



Answer

Answer: b)

Explanation: A class member declared 

protected becomes private member of 

subclass.



Question

Which of these is correct way of 

inheriting class A by class B?

a) class B + class A {}

b) class B inherits class A {}

c) class B extends A {}

d) class B extends class A {}



Answer

Answer: c)



Question
What is the output of this program?

a) 0

b) 1

c) 2

d) Compiler Error



Answer

Answer: c

Explanation: class A & class B both contain display() 
method, class B inherits class A, when display() 
method is called by object of class B, display() 
method of class B is executed rather than that of 
Class A.

output:

$ javac inheritanceDemo.java

$ java inheritanceDemo

2



Review Class Hierarchies 

in Java
Class Object is the root of the inheritance 
hierarchy in Java

If no superclass is specified a class 
inherits implicitly from Object

If a superclass is specified explicitly the 
subclass will inherit indirectly from Object



Why Polymorphism?



Why Polymorphism?, cont.



Advantages of Upcasting

Advantages

Code is simpler to write (and read)

Uniform interface for clients, i.e., type 
specific details only in class code, not in 
the client code

Change in types in the class does not 
effect the clients 

• If type changed within the inheritance hierarchy

Popular in object-oriented programs
• Many upcast to Object in the standard library



Disadvantages of Upcasting

Disadvantages

Must explicitly downcast if type details 

needed in client after object has been 

handled by the standard library (very 

annoying sometimes).

Shape s = new Line();

Line l = (Line) s; // downcast



Static and Dynamic Type

The static type of a variable/argument is the 
declaration type

The dynamic type of a variable/argument is the 
type of the object the variable/argument refers 
to



Polymorphism

Informal Example
In a bar you say “I want a beer!”
What ever beer you get is okay because your 

request was very generic

In a bar you say “I want a Samuel Adams 
Cherry Flavored beer!”
If you do not exactly get this type of beer you 

are allowed to complain

In chemistry they talk about polymorph 
materials as an example
H20 is polymorph (ice, water, and steam)



Polymorphism
Polymorphism: “The ability of a variable or argument to 
refer at run-time to instances of various classes”

The assignment s = l is legal if the static type of l is Shape or
a subclass of Shape

This is static type checking where the type comparison rules 
can be done at compile-time

Polymorphism is constrained by the inheritance hierarchy



Dynamic Binding

Binding: Connecting a method call to a method body

Dynamic binding: The dynamic type of x determines 
which method is called (also called late binding)
 Dynamic binding is not possible without polymorphism

Static binding: The static type of x determines which 
method is called (also called early binding)



Dynamic Binding, Example



Polymorphism and 

Constructors



Polymorphism and private 

Methods



Why Polymorphism and 

Dynamic Binding?

Separate interface from implementation
What we are trying to achieve in object-

oriented programming!

Allows programmers to isolate type 
specific details from the main part of the 
code
Client programs only use the method provided 

by the Shape class in the shape hierarchy 
example.

Code is simpler to write and to read

Can change types (and add new types) 
with this propagates to existing code



Overloading vs. Polymorphism (1)

Has not yet discovered that the Circle, 

Line and Rectangle classes are related. 

(not very realistic but just to show the idea)



Overloading vs. Polymorphism (2)



Overloading vs. Polymorphism (3)

Discovered that the Circle, Line and 
Rectangle class are related are related via 
the general concept Shape

Client only needs access to base class 
methods



Overloading vs. Polymorphism (4)



Overloading vs. Polymorphism (5)

Must extend with a new class Square and 

the client has still not discovered that the 

Circle, Line, Rectangle, and Square 

classes are related



Overloading vs. Polymorphism (6)



Overloading vs. Polymorphism (7)

Must extend with a new class Square 

that is a subclass to Rectangle



Overloading vs. Polymorphism (8)



The Opened/Closed Principle

Open
The class hierarchy can be extended with new 

specialized classes

Closed
The new classes added do not affect old clients

The superclass interface of the new classes can 
be used by old clients

This is made possible via
Polymorphism

Dynamic binding



Abstract Class and Method

An abstract class is a class with an 

abstract method.

An abstract method is method with out a 

body, i.e., only declared but not defined.

It is not possible to make instances of 

abstract classes.

Abstract method are defined in 

subclasses of the abstract class



Abstract Classes in Java

Classes with abstract methods must declared 
abstract

Classes without abstract methods can be declared 
abstract

A subclass to a concrete superclass can be 
abstract

Constructors can be defined on abstract classes.

Instances of abstract classes cannot be made

Abstract fields not possible



Abstract Class in Java, Example



Abstract Methods in Java

A method body does not have be defined

Abstract method are overwritten in 
subclasses

Idea taken directly from C++

pure virtual function

You are saying: “The object should have this 
properties I just do not know how to 
implement the property at this level of 
abstraction.”



Abstract Methods in Java, 

Example



Today

Exercises

[14.1-14.3]

Submit online your java implementations 
(single .zip with your student number)

Ensure you’re totally comfortable with 
object orientated principles

e.g., inheritance, polymorphism, up/down 
casting, types, classes, objects, interfaces, 
abstract classes, …



This Week

Read Associated Chapters

Review Slides

Java Exercises

Online Quizzes



Summary

Polymorphism an object-oriented “switch” statement

Polymorphism should strongly be preferred over 
overloading
Must simpler for the class programmer

Identical (almost) to the client programmer

Polymorphism is a prerequest for dynamic binding 
and central to the object-oriented programming 
paradigm
Sometimes polymorphism and dynamic binding are 

described as the same concept (this is inaccurate).

Abstract classes
Complete abstract class no methods are abstract but 

instancing does not make sense.

Incomplete abstract class, some method are abstract



Questions/Discussion

Revision Questions





Question
What is the output of this program?

a) 2 2

b) 3 3

c) 2 3

d) 3 2



Answer

Answer: c

output:

$ javac inheritance.java

$ java inheritance

2 3



Question
What is the output of this program?

a) 2 2

b) 3 3

c) Runtime Error

d) Compilation Error



Answer

Answer: d)

Explanation: class contains a private member 
variable j, this cannot be inherited by subclass B 
and does not have access to it.

output:

$ javac inheritance.java

Exception in thread “main” java.lang.Error: 
Unresolved compilation problem:

The field A.j is not visible



Question
What is the output of this program?

a) 1 2

b) 2 1

c) Runtime Error

d) Compilation Error



Answer

Answer: a)

Explanation: Keyword super is used to call 
constructor of class A by constructor of class B. 
Constructor of a initializes i & j to 1 & 2 
respectively.

output:

$ javac superExample.java

$ java superExample

1 2



Question
What is the output of this program?

a) 1 2

b) 2 1

c) 1 3

d) 3 1



Answer

Answer: a)

Explanation: Both class A & B have member with 
same name that is j, member of class B will be 
called by default if no specifier is used. I contains 
1 & j contains 2, printing 1 2.

output:

$ javac Output.java

$ java Output

1 2


