Polymorphism

Object Orientated Programming in Java

Benjamin Kenwright

Quizzes/Labs

B Every single person should have done
[>Quiz 00 — Introduction
[>Quiz 01 - Java Basics

@ Every single person should have at
least submitted an attempt at the
exercises

Bl Upcast (a
[l Static and
B Dynamic

Outline

B \Why use polymorphism?

nd downcast)
dynamic type
ninding

@ Polymorp

NIsSmM

>A polymorphic field (the state design
pattern)Today’s Practical

B Review/D
B Summary

ISCUSSION

Question

B Which of these keyword must be used
to inherit a class?

a) super
b) this

C) extent
d) extends

Answer

Ed) extends

Question

B Which of these keywords Is used to
refer to member of base class from a
sub class?

a) upper

b) super

C) this

d) None of the mentioned

Answer

B Answer: b)

Explanation: whenever a subclass needs
to refer to its Immediate superclass, it can
do so by use of the keyword super.

Question

@ A class member declared protected
becomes member of subclass of which

type?

a) public member

b) private member
C) protected member
d) static member

Answer

B Answer: b)

Explanation: A class member declared
protected becomes private member of
subclass.

Question

B Which of these Is correct way of
iInheriting class A by class B?

a) class B + class A {}
b) class B inherits class A {}
c) class B extends A {}
d) class B extends class A {}

Answer

B Answer: C)

Question

B What is the output of this program?

[

class A {

int i; El) ()

void display() {

System.out.println(i); b) 1
} C) 2
¥ .
class B extends A { d) Compller EI’FOF
int 7J;
void display() {
system.out.println(j);
¥
}

class inheritance demo {
public static void main(String args[])
{
B obj = new B();
obj.i=1;
obj.Jj=2;
obj.display();

Answer

B Answer: C

Explanation: class A & class B both contain display()
method, class B inherits class A, when display()
method is called by object of class B, display()
method of class B is executed rather than that of
Class A.

output:

$ javac inheritanceDemo.java
$ java inheritanceDemo

2

Review Class Hierarchies

N Java

@ Class Object Is the root of the inheritance
hierarchy in Java

[If no superclass is specified a class
iInherits implicitly from Object

[If a superclass is specified explicitly the
subclass will inherit indirectly from Object

Object

!
Shape

)
| | |

Circle Line Rectangle

1‘

Square

Why Polymorphism?

// substitutability

Shape s;

S. drax:w () > Shape

s.resize () | l
Circle Line Rectangle

// extensibility

Shape s;

s.draw () > Sha

s.resize () g pe

| |

Circle Line Rectangle

*

Square

Why Polymorphism?, cont.

// common interface

Shape s;

s.draw ()
s.resize ()

// upcasting

Shape s =
s.draw ()
s.resize()

new

Shape
draw ()
resize ()
'y
Circle Line Rectangle
draw () draw () draw ()
resize ()| | resize () | resize()
Line() ;

Advantages of Upcasting

B Advantages
>Code is simpler to write (and read)

>Uniform interface for clients, i.e., type
specific detalls only in class code, not In
the client code

>Change in types in the class does not
effect the clients

* |f type changed within the inheritance hierarchy

>Popular in object-oriented programs
« Many upcast to Object in the standard library

Disadvantages of Upcasting

@ Disadvantages

[>Must explicitly downcast if type details
needed in client after object has been
handled by the standard library (very
annoying sometimes).

Shape s = new Line();
Line | = (Line) s; // downcast

to

Static and Dynamic Type

[The static type of a variable/argument is the
declaration type

B The dynamic type of a variable/argument is the
type of the object the variable/argument refers

class A{
// body

}

class B extends A{

// body

}

public static void main(String args|[]) {

A x;

B

X
Y
X

<

new A() ;
new B() ;

// static type A
// static type B

// dynamic type A
// dynamic type B
// dynamic type B

Polymorphism

Informal Example

@ In a bar you say “| want a beer!”

>What ever beer you get is okay because your
reguest was very generic

@ In a bar you say “| want a Samuel Adams
Cherry Flavored beer!”

>1f you do not exactly get this type of beer you
are allowed to complain

E In chemistry they talk about polymorph
materials as an example

>H20 is polymorph (ice, water, and steam)

Polymorphism

E Polymorphism: “The ability of a variable or argument to
refer at run-time to instances of various classes”

Shape s = new Shape() ;

Circle c = new Circle();

Line 1 = new Line();

Rectangle r = new Rectangle();

s = 1; // is this legal?
l =s; // is this legal?
l = (Line)s // is this legal?

B The assignment s = | is legal if the static type of | is Shape or
a subclass of Shape

B This is static type checking where the type comparison rules
can be done at compile-time

B Polymorphism is constrained by the inheritance hierarchy

Dynamic Binding

class A { class B extends A {
void doSomething() { void doSomething () {
} }

} }

A x = new A();

B y = new B();

X =vy;

x.doSomething(); // on class A or class B?

B Binding: Connecting a method call to a method body

E Dynamic binding: The dynamic type of x determines
which method is called (also called late binding)

> Dynamic binding is not possible without polymorphism

@ Static binding: The static type of x determines which
method is called (also called early binding)

Dynamic Binding, Example

class Shape {
void draw() { System.out.println ("Shape"); }
}
class Circle extends Shape {
void draw() { System.out.println ("Circle"); }
}
class Line extends Shape ({
void draw() { System.out.println ("Line"); }
}
class Rectangle extends Shape {
void draw() {System.out.println ("Rectangle"); }
}
public static void main(String args[]) {
Shape[] s = new Shape[3];
s[0] = new Circle();
s[1l] = new Line();
s[2] = new Rectangle();
for (int 1 = 0; 1 < s.length; i++){
s[i] .draw(); // prints Circle, Line, Rectangle

}

Polymorphism and
constructors

class A { // example from inheritance lecture
public A() {
System.out.println("A()") ;
// when called from B the B.doStuff() is called
doStuff () ;
}
public void doStuff () {System.out.println("A.doStuff()"); }
}
class B extends A{

int i = 7;

public B() {System.out.println("B()");}

public void doStuff () {System.out.println("B.doStuff() " + i);
}

}

public class Base{ % prints
public static void main(String[] args) { A()
B b = new B(); B.doStuff() 0
b.doStuff() ; BO

\ B.doStuff() 7

Polymorphism and private
Methods

void draw() { System.out.println ("Shape"); }

private void doStuff () ({
System.out.println ("Shape.doStuff()") ;

}
}

class Rectangle extends Shape {
void draw() {System.out.println ("Rectangle"); }

public void doStuff () ({
System.out.println ("Rectangle.doStuff()");
}
}

public class PolymorphShape {
public static void polymorphismPrivate () {
Rectangle r = new Rectangle();
r.doStuff () ; // okay part of Rectangle interface
Shape s = r; // up cast
s.doStuff () ; // not allowed, compiler error

Why Polymorphism and
Dynamic Binding?

[Separate interface from implementation

>What we are trying to achieve in object-
oriented programming!

@ Allows programmers to isolate type
specific details from the main part of the
code

>Client programs only use the method provided

by the Shape class in the shape hierarchy
example.

B Code is simpler to write and to read

B Can change types (and add new types)
with this propagates to existing code

Overloading vs. Polymorphism (1)

B Has not yet discovered that the Circle,
Line and Rectangle classes are related.
(not very realistic but just to show the idea)

Circle
> draw ()
" | resize ()

j Line
OverloadClient —-— draw ()
| resize ()

| Rectangle
“» draw ()
resize ()

Usage not
inheritence

Overloading vs. Polymorphism (2)

class Circle {

void draw() { System.out.println("Circle"); }}
class Line {

void draw() { System.out.println("Line"); }}
class Rectangle ({

void draw() { System.out.println("Rectangle"); }}

public class OverloadClient({
// make a flexible interface by overload and hard work
public void doStuff (Circle c){ c.draw(); }
public void doStuff(Line 1){ l.draw(), }
public void doStuff (Rectangle r){ r.draw(); }

public static void main(String[] args) {
OverloadClient oc = new OverloadClient() ;
Circle ci = new Circle();
Line 1li = new Line() ;
Rectangle re = new Rectangle();
// nice encapsulation from client
oc.doStuff(ci); oc.doStuff(li); oc.doStuff(re);

Overloading vs. Polymorphism (3)

[Discovered that the Circle, Line and
Rectangle class are related are related via
the general concept Shape

[Client only needs access to base class
methods

Shape
PolymorphClient s draw ()
resize()
|
Circle Line Rectangle
draw () draw () draw ()
resize ()| | resize ()| | resize()

Overloading vs. Polymorphism (4)

class Shape ({
void draw() { System.out.println("Shape"); }}

class Circle extends Shape ({

void draw() { System.out.println("Circle"); }}
class Line extends Shape {

void draw() { System.out.println("Line"); }}
class Rectangle extends Shape {

void draw() { System.out.println("Rectangle"); }}

public class PolymorphClient({
// make a really flexible interface by using polymorphism
public void doStuff (Shape s){ s.draw(); }

public static void main(String[] args) {
PolymorphClient pc = new PolymorphClient() ;
Circle ci = new Circle():;
Line li = new Line();
Rectangle re = new Rectangle() ;
// still nice encapsulation from client
pc.doStuff(ci); pc.doStuff(li); pc.doStuff (re);

Overloading vs. Polymorphism (5)

B Must extend with a new class Square and
the client has still not discovered that the
Circle, Line, Rectangle, and Square
classes are related

Circle
> draw ()
! | resize()

; Line
; o~ draw()
/| resize()

OverloadClient -

v Rectangle
. = draw ()
resize ()

: Square
‘> draw()
resize ()

Overloading vs. Polymorphism (6)

class Circle {

void draw() { System.out.println("Circle"); }}
class Line {

void draw() { System.out.println("Line"); }}
class Rectangle ({

void draw() { System.out.println("Rectangle"); }}
class Square {

void draw() { System.out.println("Square"); }}

public class OverloadClient({
// make a flexible interface by overload and hard work
public void doStuff (Circle c){ c.draw(); }
public void doStuff (Line 1){ l.draw(); }
public void doStuff (Rectangle r){ r.draw(); }
public void doStuff (Square s){ s.draw(), }

public static void main(String[] args) {

// nice encapsulation from client
oc.doStuff(ci); oc.doStuff(li); oc.doStuff (re);

Overloading vs. Polymorphism (7)

B Must extend with a new class Square
that is a subclass to Rectangle

Shape
PolymorphClient s » draw ()
resize ()
Circle Line Rectangle
draw () draw () draw ()
resize ()| | resize () | resize()

T

Square
draw ()
resize()

Overloading vs. Polymorphism (8)

class Shape {
void draw() { System.out.println("Shape"); }}

class Circle extends Shape {

void draw() { System.out.println("Circle"); }}
class Line extends Shape {

void draw() { System.out.println("Line"); }}
class Rectangle extends Shape {

void draw() { System.out.println("Rectangle"); }}
class Square extends Rectangle {

void draw() { System.out.println("Square"); }}

public class PolymorphClient({
// make a really flexible interface by using polymorphism
public void doStuff (Shape s){ s.draw(); }
public static void main (String[] args) {

// still nice encapsulation from client
pc.doStuff (ci); pc.doStuff(li); pc.doStuff (re);

The Opened/Closed Principle

B Open

>The class hierarchy can be extended with new
specialized classes

M Closed

>The new classes added do not affect old clients

>The superclass interface of the new classes can
be used by old clients

@ This is made possible via
> Polymorphism
>Dynamic binding

Abstract Class and Method

B An abstract class Is a class with an
abstract method.

B An abstract method is method with out a
body, I.e., only declared but not defined.

[It is not possible to make instances of
abstract classes.

B Abstract method are defined In
subclasses of the abstract class

Abstract Classes In Java

abstract class ClassName {
// <class body>

}

B Classes with abstract methods must declared
abstract

B Classes without abstract methods can be declared
abstract

@ A subclass to a concrete superclass can be
abstract

B Constructors can be defined on abstract classes.
B Instances of abstract classes cannot be made

B Abstract fields not possible

Abstract Class in Java, Example

public abstract class Stack{

abstract public wvoid push(Object el);
abstract public void pop(); // note no return value
abstract public Object top();
abstract public boolean full();
abstract public boolean empty() ;
abstract public int size();
public void toggleTop () {
if (size() >= 2){
Object topEll = top(); pop():
Object topEl2 = top(); pop():
push (topEll) ; push(topEl2) ;
}
}
public String toString() {
return "Stack";
}
}

Abstract Methods In Java

abstract [access modifier] return type
methodName ([parameters]) ;

B A method body does not have be defined

B Abstract method are overwritten In
subclasses

[Idea taken directly from C++
>pure virtual function

[You are saying: “The object should have this
properties | just do not know how to

Implement the property at this level of
abstraction.”

Abstract Methods In Java,
Example

public abstract class Number ({

public abstract int intValue();
public abstract long longValue();
public abstract double doubleValue() ;
public abstract float floatValue();
public byte byteValue() {

// method body
}
public short shortValue () {

// method body

}

Today

B Exercises
>[14.1-14.3]

[>Submit online your java implementations
(single .zip with your student number)

B Ensure you're totally comfortable with
object orientated principles
>e.g., inheritance, polymorphism, up/down

casting, types, classes, objects, interfaces,
abstract classes, ...

This Week

Bl Read Assoclated Chapters
B Review Slides

B Java Exercises

B Online Quizzes

B Polymor

B Polymor
overloac

Summary

ohism an object-oriented “switch” statement
ohism should strongly be preferred over

INg

>Must simpler for the class programmer
>Identical (almost) to the client programmer
B Polymorphism is a prerequest for dynamic binding
and central to the object-oriented programming
paradigm

>Sometimes polymorphism and dynamic binding are
described as the same concept (this is inaccurate).

B Abstract

classes

>Complete abstract class no methods are abstract but
Instancing does not make sense.

>Incomplete abstract class, some method are abstract

Questions/Discussion

E Revision Questions

Question
B What is the output of this program?

class A {

int i; 8)22
} b) 3 3

class B extends A {

int j; C) 2 3
void display() { d) 3 2

super.i = j + 1;

System.out.println(j + " " + 1);

}

-

I
class inheritance {

public static void main(String args|[])

{

B obj = new B();

obj.i=1;
obj.j=2;
obj.display();

[

Answer

B Answer: C

output:

$ javac inheritance.java
$ java inheritance

23

Question

@ What is the output of this program?

[S——

class A |
public int i; a) 22
private int j;
} b)33
class B extends A { C) Runtlme EI’FOI’
void display() { d) Compilation Error

super.j = super.i + 1;
System.out.println(super.i + " " + super.j);

b

4

I
class inheritance {

public static void main(String args[])

{
B obj = new B();
obj.1=1;
obj.j=2;

obj.display();

Answer

B Answer: d)

Explanation: class contains a private member
variable |, this cannot be inherited by subclass B
and does not have access to it.

output:
$ javac inheritance.java

Exception in thread “main” java.lang.Error:
Unresolved compilation problem:

The field A.j is not visible

Question
@ What is the output of this program?

class A |

public int i; a) 1 2

public int j;
AQ) { b)21
J S ¢) Runtime Error
| d) Compilation Error

class B extends A |
int a;
B() {

super();
class super_use {
public static void main(String args[])

B obj = new B();

System.out.println(obj.i1i + " " + 0bj.]j);

Answer

B Answer: a)

Explanation: Keyword super is used to call
constructor of class A by constructor of class B.
Constructor of a initializes 1 & jto 1 & 2
respectively.

output:

$ javac superExample.java
$ java superExample

12

Question
@ What is the output of this program?

class A {

public int i;

protected int J; a) 1 2
) b)21

class B extends A | C) 1 3
int j;
void display() { d) 3 1
super.] = 2;
System.out.println(i + " " + j);
}
}

class Output {

public static veoid main(String args[])

{
B obj = new B();
obj.i=1;
obj.j=2;
obj.display();

[

Answer

B Answer: a)

Explanation: Both class A & B have member with
same name that is |, member of class B will be
called by default if no specifier is used. | contains
1 & | contains 2, printing 1 2.

output:

$ javac Output.java
$ java Output

1?2

