
Internal Classes 

and Exceptions
Object Orientated Programming in Java

Benjamin Kenwright





Outline

Exceptions and Internal Classes

Why exception handling makes your 

code more manageable and reliable

Today’s Practical

Review/Discussion



Question

Have you ever had a program crash?





Software Reliability

Why did the program crash?

How could you have prevented the 

program from crashing?

Who’s fault was it?



Exception Handling

Error handling in general

Java's exception handling 
mechanism

The catch-or-specify principle

Checked and unchecked 
exceptions

Exceptions impact/usage
Overloaded methods

Interfaces

Inheritance hierarchies

Constructors



Error Handling

Not all errors can be caught at compile time!

Help -- run-time error! What next …?

First ideas:
System.out.println()

System.err.println() (much better than the 
previous)

Good guess but some errors call for corrective 
action, not just warning

In general, printing is a bad idea!

Better: tell someone (not necessarily the user)!



Error Handling, cont.

Establish return code convention
0 vs. !0 in C/C++

boolean in Java

Set value of a global variable
Done in many shells.

In Java use a public static field in a class

Raise an exception, catch it, and act
The idea comes from hardware

Modern language support (Java, Python, Lisp, 
Ada, C++, C#)



General Errors and Error 

Handling
Error must be handled
One error in a method can be handled very 

differently in the clients, this is not a good approach

Can be extremely hard to debug

To handle an error detailed information on the 
error must be provided
Where did the error occur (class, method, line 

number)

What type of error

A good error message

Dump of runtime stack? (too much information?)

In object-oriented languages errors are 
represented by objects



How to Handle Errors

Ignore: False alarm just continue

Report: Write a message to the screen 
or to a log

Terminate: Stop the program execution.

Repair: Make changes and try to 
recover the error

To be able to repair would be the best. 
However, often the best that can be 
done is the combination of report and 
terminate



Java's Exception Handling

Exception: An event that occurs during the 
execution of a program the disrupts the normal 
transaction flow
A run-time phenomenon

Exception handling is part of the language

Exceptions are objects

Exceptions are structured in a class hierarchy.

It is not possible to ignore an exceptions (nice 
feature?)
A method specifies, which exception may occur, the 

client must anticipate these exceptions, otherwise 
compile-time error

It is sometimes possible to recover to a known 
good state after an exception was raised



Java's Exception Handling, cont.

Java’s object-oriented way to handle errors
more powerful, more flexible than using return

keywords try, catch, throw, throws, finally

An exception is an object that describes an 
erroneous or unusual situation

Exceptions are thrown by a program, and may 
be caught and handled by another part of the 
program

A program can therefore be separated into a 
normal execution flow and an exception
execution flow

An error is also represented as an object in 
Java, but usually represents a unrecoverable 
situation and should not be caught



Motivation for Exception Handling



Exception Handling Model

Code where you anticipate a problem:
Detect error, probably with an if create a new 

exception and throw it

Alternatively let JVM detect error, create, and 
throw an exception

Code in client (somewhere in message 
invocation stack)
try, hoping for the best

prepare to catch an exception



Simple Example



Java's Catch or Specify 

Requirement

Catch

A method can catch exception by 

providing and exception handler

Specify

If a method chooses not to catch, then 

specify which exceptions are thrown

Exceptions are part of a method's public 

interface



Checked/Unchecked 

Exceptions

An exception is either checked or unchecked

Checked = checked by the compiler

A checked exception can only be thrown within a 
try block or within a method that is designated to 
throw that exception

The compiler will complain if a checked exception is 
not handled appropriately

An unchecked exception does not require explicit 
handling, though it could be processed that way.

An example many run-time exceptions are 
unchecked exceptions



Java's Exception Class 

Hierarchy



Java's Exception Class 

Hierarchy, cont.
Throwable
Superclass for all exceptions

Two methods for filling in and printing the stack

Error
Serious internal errors (should not occur in 

running programs).

Are normally not handled. (report and terminate)

Programs should not throw Error

The catch or specify principle does not apply, 
because they are so severe

Examples
• Dynamic linking failure

• Memory shortage

• Instantiating abstract class



Java's Exception Class 

Hierarchy, cont.
Exception
The base class for most exception used in Java 

programs

The catch or specify principle does apply

Examples of subclasses
• IOException

• ClassNotFoundException

RuntimeException
Not a good name (all exceptions are at run-time)!

Commonly seen run-time error

The catch or specify principle does not apply, 
because they are so ubiquitous.

Examples
• Divide by zero/Cast error/Null pointer



The try Statement

To process an exception when it occurs, the 
line that throws the exception is executed 
within a try block

A try block is followed by one or more catch 
clauses, which contain code to process an 
exception

Each catch clause has an associated exception 
type



The catch Statement

The catch statement is used for catching 
exceptions.

A try statement must be accompanied by 
a catch statement

Try and catch statements can be nested, 
i.e., try block in try block, etc.



The catch Statement, cont.

When an exception occurs, processing 
continues at the first catch clause that 
matches the exception type

The catch statements should be should be 
listed in most-specialized-exception-first 
order



The finally Clause
A try statement can have an optional clause 
designated by the reserved word finally

If no exception is generated, the statements in 
the finally clause are executed after the 
statements in the try block complete.

Also, if an exception is generated, the statements 
in the finally clause are executed after the 
statements in the appropriate catch clause 
complete.



The finally Clause, cont.



The finally Clause, Example



The throw Statement

All methods use the throw an exception



Exception Propagation

If it is not appropriate to handle the 
exception where it occurs, it can be 
handled at a higher level

Exceptions propagate up through the 
method calling hierarchy until they are 
caught and handled or until they reach the 
outermost level

A try block that contains a call to a method 
in which an exception is thrown can be 
used to catch that exception



Exception Propagation, Example



Rethrowing an Exception



Creating New Exceptions

Requires careful design (part of the public 
interface)

Choose the correct superclass

Choosing the name
The most important thing for new exceptions

Tends to be long and descriptive 
(ArrayIndexOutOfBoundsException)

Code for exception class typically minimal

Naming convention:
All classes that inherits from Exception has 

'Exception' postfixed to their name.

All classes that inherits from Error has 'Error' 
postfixed to their name



Creating New Exceptions, 

Example



Overloading and Exception
Methods cannot be overloaded based 

on exception specification



Interfaces and Exceptions

Exceptions can naturally be specified 

for methods in interfaces



Inheritance and Exceptions

If base-class method throws an exception, 
derived-class method may throw that exception 
or one derived from it

Derived-class method cannot throw an exception 
that is not a type/subtype of an exception thrown 
by the base-class method
Otherwise subclass cannot be upcasted to base-class



Inheritance and Constructors

Constructors can throw exceptions

Subclass constructor cannot catch exception 

thrown by a base class constructor



Guidelines

Do not use exceptions for normal control flow!
Slows down the program

Do use exceptions to indicate abnormal conditions!

Handle the error (fully or partially) if you have 
enough information in the current context. 
Otherwise, propagate!

Handle group of statements
Do not encompass every single statement in a try 

block

Use exceptions in constructors!

Do something with the exceptions your code 
catches!

Clean up using finally



Review

The manner in which an exception is 
processed is an important design 
consideration

Advantages of Exceptions

Separates error handling from “regular” code.

Propagation of errors up the call stack.
• Handle error in a context

Grouping of error type and differentiation of 
errors.

• Overview

• Reuse of error handling code



Summary

Overview Java Exceptions 

and Internal Classes

Hands-On/Practical

Today is about becoming 

comfortable/familiar with 

Exceptions



This Week

Read Associated Chapters

Review Slides

Java Exercises

Online Quizzes



Today’s Practical

Programming Exercises (Book): 
 Chapter 13.1-13.5

 (Only code not UML)

Upload single .zip file containing all your java files (only 
java files).
 www.zjnu.xyz

 zip file name should be your student number, e.g., 
29392929.zip

Remember to comment your code, name/student number 
at the top of files.

Organise your files so it’s clear to identify each exercise 
(e.g., file names/folders)
 ch13_1.java, ch13_2.java, …

http://www.zjnu.xyz/


Questions/Discussion


