MultiThreading

Object Orientated Programming in Java

Benjamin Kenwright

Outline

B Review

[Essential Java Multithreading
B Examples

@ Today's Practical = = s
@ Review/Discussion &\ Og - -

N
& y \

f
Iy

-

Question

[Does the following code compile? What
would the output be?

public class Question

{

public static void main(String args[])

{

short s =
int X =
int y =
int zZ =
S += z;

System.out.printlin("" + x + y + s);

Answer

Question.java:9: error: integer number too large: 08
int y = 08;

1 error

Question

[Does the following code compile? What
would the output be?

public class Question

{
public static vold main(String args[])
{
short s =
int X =
int y =
int z =
s += z;

System.out.println("" + x + y + s);

Answer

[/8-7/616

Explain why?

Question

[Does the following code compile? What
would the output be?

public class Question
{
public static volid main(String args[])

{

int x =

if (x =)
{

System.out.println("Both number are equal™);
}

Answer

: error: incompatible types: int cannot be converted to boolean
:2]

Question

[Does the following code compile? What
would the output be?

public class Question
{
public static void main(String args[])
{
new Question() .Gol () ;
}
void Gol ()
{
int x;
GoZ (++x) ;
}
volid GoZ2(int V)
{
int x = ++y;
System.out.println(x) ;

Answer

Question.java:12: error: variable x might not have been initialized
Go2(++x);

1 error

Question

[Does the following code compile? What
would the output be?

public class Question

{

public static void main(String args[])

{

String sl = "ghg',

String s2 = sl;

sl += "d";

System.out.println(sl + " " + s2 + " " + (sl==s2));

StringBuffer sbl
StringBuffer sb2
sbl.append ("d") ;
System.out.println(sbl + " " + sb2 + " " + (sbl==sb2)),

~ ") .
- y

new StringBuffer ("a
sbl;

Answer

[Yes

abcd abc false
abcd abcd true

Why Multithreading?

B \What Is the rational?
B \Why make things complicated?

B \What would happen if we didn’t have
multithreading?

Concurrency

Concurrency & Parallelism

- --T"].-.rrgoc}"'

o FGFL._ “T‘hrfﬂdz

. E - ' T T T
Time

Threading

B Advantages & Disadvantages of Threads

B Java Threads
>Class: java.lang.Thread
>Interface: java.lang.Runnable

B Multithreaded Programming

Thread ‘ Runnable

|

MyThread MyThread?
run () run()

Thread Definition

[Definition: A thread Is a single sequential
flow of control within a program (also
called lightweight process)

Thread

B Each thread acts like its own sequential
program
>Underlying mechanism divides up CPU
between multiple threads

@ Two types of multithreaded applications

>Make many threads that do many tasks in
parallel, i.e., no communication between the
threads (GUI)

>Make many threads that do many tasks
concurrently, 1.e., communication between the
threads (data access)

Advantages/Disadvantages

B Advantages

>Responsiveness, e.g., of user interfaces
>Resource sharing

>Economy

>Utilization of multiprocessor hardware
architectures

[E Disadvantages
>More complicated code

>Deadlocks (very hard to debug logical
program errors)

thread

Single & Multithreaded
Processes

‘cnde

data “ files

code

‘ data || files ‘

-/

single-threaded

multi-threaded

User and Kernel Threads

B Thread management done by user-level
threads library

Examples
POSIX Pthreads (e.g., Linux and NT)

Mach C-threads (e.g., MacOS and NeXT)
Solaris threads

B Supported by the kernel

Examples
Windows 95/98/NT/2000/XP

Solaris
TRU64 (one of HP's UNIX)

Java Threads

B Java threads may be created by
>Extending Thread class
>Implementing the Runnable interface

Class Thread

B The simplest way to make a thread
@ Treats a thread as an object
@ Override the run() method, I.e., the

t

nread’s “main”
>Typically a loop

>Continues for the life of the thread

E Create Thread object, call method start()
B Performs initialization, call method run()
B Thread terminates when run() exits

Extending the Thread Class

class Worker extends Thread {
public void run() {
System.out.println(“*I\’'m a worker thread”);
} // thread is dead

public class First{
public static void main (String args|[]) {
Worker runner = new Worker()
runner.start() ;
System.out.println(“*I\’'m the main thread”);

} // main thread alive until all children are dead

Extending the Thread Class
Example

G:*java -cp . ThreadTest
B Goodbye
class S5impleThread extends Thread | B Hello
puklic SimpleThread(String str) { 1 Goodbyse
super (str) : . Guudh}-
1 1 Hello
public weoid run() { : G?Dd?y’
for (int i = 0; i < 107 i++) | E:ﬁ::
System.cut.println{i + " " + getName()): 4 Goodbye
try { 4 Hello
sleep((int) (Math.random() * 1) Goodbye
} catch (InterruptedException =) {} 6 Goodby:
} Hello
: T 1 7 Goodbye
System.out.println ("DONE! + getName ()) ; & Hello
} 8 Goodbye
1 7 Hello
0 Goodbye
class ThreadTlest | ONE! Goodbye
public static woid main (String[] args) | B H?ll?
new SimpleThread("Hello™) .atart(): ﬂE:E%l:ellD
new SimpleThread("Goodbye™) ..start():
} javac ThreadTest.java

java -cp . ThreadTest

ing

threaded Programmi

Mult

Sharing Resources

[Single threaded programming: you own
everything, no problem with sharing

@ Multi-threaded programming: more than one

t
t

nread may try to use a shared resource at
ne same time

>Add and withdraw from a bank account

>Using the speakers at the same time, etc.

[Java provides locks, I.e., monitors, for
objects, so you can wrap an object around a
resource

>First thread that acquires the lock gains control

of the object, and the other threads cannot call
synchronized methods for that object

Locks

B One lock pr. object for the object’s methods

B One lock pr. class for the class’ static
methods

@ Typically data Is private, only accessed
through methods

>Must be private to be protected against
concurrent access

@ If a method is synchronized, entering
that method acquires the lock

>No other thread can call any synchronized
method for that object until the lock is released

Sharing Resources, cont.

B Only one synchronized method can be

(synchronized void foo() {/*..*/}
synchronized void bar() {/*..*/}

Sharing Resources, cont.

[Efficiency

>Memory: Each object has a lock
Implemented in Object

>Speed and Overhead (e.g., calling)

* Older standard Java libraries used
synchronized a lot, did not provide any
alternatives

Sharing Resources, Example

Thread

f

Producer Producer

CubbyHole

sync get()
sync put()

/

The shared resource

Sharing Resources, Example

public class CubbyHole ({
private int contents;
private boolean available = false;

public synchronized int get() {
while (available == false) {
try { wait(); } ... }
available = false;
notifyAll () ;
return contents;

}
public synchronized wvoid put(int value) ({
while (available == true) {
try { wait(),; ...} }
contents = value;
available = true;
notifyAll () ;

Sharing Resources, Example cont.

public class Producer extends Thread ({

private CubbyHole cubbyhole;

private int number;

public Producer (CubbyHole c, int number) ({
cubbyhole = c;
this.number = number; }

public void run() {
for (int i = 0; 1 < 10; i++) {

cubbyhole.put (i) ;

System.out.println(
"Producer #" + this.number + " put: " + 1i);

try {sleep((int) (Math.random() * 100));
} catch (InterruptedException e) { } }

Sharing Resources, Example cont.

public class Consumer extends Thread {
private CubbyHole cubbyhole;
private int number;
public Consumer (CubbyHole ¢, int number) {
cubbyhole = c;
this.number = number;

}

public void run() {
int value = 0;
for (int 1 = 0; 1 < 10; 1i++) {
value = cubbyhole.get() ;
System.out.println(

"Consumer #" + this.number + " got: " + wvalue);
}

Sharing Resources, Example cont.

public class ProducerConsumerTest {
public static void main(String[] args) {
CubbyHole ¢ = new CubbyHole() ;
Producer pl = new Producer(c, 1) ;

Consumer cl = new Consumer(c, 1),
pl.start();

cl.start () ;

The Runnable Interface

@ To inherit from an existing object and
make It a thread, implement the
Runnable interface

B A more classical, function-oriented way
to use threads

public interface Runnable{
public abstract void run();

}

The Runnable Interface, cont .

class Worker implements Runnable({
public void run() {

System.out.println(“I\'m a worker thread”);

public class Second{
public static void main(String args[]) {
Runnable runner = new Worker() ;

Thread thrd = new Thread(runner) ;
thrd.start() ;

System.out.println(“I\'m the main thread”);

The Runnable Interface, cont.

class SimpleRunnable implements Runnable {
private String myName; private Thread t;
SimpleRunnable (String name) {
myName = name; t = new Thread(this); t.start();

}
public wvoid run() {

for (int i = 0; 1 < 10; i++) {
System.out.println(i + " " + myName) ;
try {
t.sleep((long) (Math.random() * 1000));

} catch (InterruptedException e) ({}

}
System.out.println ("DONE! " + myName) ;

}

public class TwoRunnableDemo {
public static void main (String[] args)
{ SimpleRunnable runnerl = new SimpleRunnable
("Jamaica") ; SimpleRunnable runner2 = new
SimpleRunnable ("Fiji"); }

Java Thread Management

@ suspend() — suspends execution of the
currently running thread

@ sleep() — puts the currently running thread to
sleep for a specified amount of time

B resume() — resumes execution of a suspended
thread

@ stop() — stops execution of a thread

start() ___return/stop()
- a \\ T
/

new sleep() 1
e SHSpEHd()I | resume()
wait() |l notify()
f
\
blocked

Synchronized Fields and Constructors

Class or object fields cannot be synchronized.

public class DataFields({
/** A synchronized object field not allowed */

private synchronized int x;
/** A synchronized class field not allowed */

public static synchronized int y;
}

e Constructors cannot be synchronized.
public class DataFields({
public synchronized DataFields () {// not allowed }

public static synchronized void staticMethod() {
System.out.println("I'm in sync"); // allowed

Issues

B Thread priority
B Thread groups

B Daemon (unix term)

>similar to a service (on
Win32)

[Deadlock

>Very hard to detect
logical errors in programs

Deadlocks

public class TwoResources ({
private int contentsA = 10;

private int contentsB = 20;
private boolean availableA = true;
private boolean availableB = true;
public synchronized int getA() ({
while (availableA == false) {
try { wait(); } ... }

}
public synchronized wvoid putA(int wvalue)

while (availableA == true) {
try { wait(); ...} }

}

// ditto for B resource

Deadlocks, cont.

public class TRConsumer extends Thread ({
// start thread in constructor
private TwoResources tr;
public void getAthenB() {
int a = tr.getA(); sleepy(2000);
int b = tr.getB();
}
public void getBthenA() {
int b = tr.getB(); sleepy(2000) ;
int a = tr.getA();
}
public static void createDeadlock() {
TwoResources tr = new TwoResources() ;
TRConsumer one = new TRConsumer (tr, "A"); // A B
TRConsumer two = new TRConsumer (tr, "B"); // B A

Summary

B Overview Multithreading with Java

@ Single-threaded programming: live by all by
your self, own everything, no contention for
resources

@ Multithreading programming: suddenly “others”
can have collisions and destroy information, get
locked up over the use of resources

B Multithreading is built-into the Java
programming language

B Multithreading makes Java programs
complicated

>Multithreading is by nature difficult, e.g., deadlocks

This Week

Bl Read Assoclated Chapters
B Review Slides
B Java Exercises

Exercises

B Chapter 29
Exercises 29.1t0 29.4

Questions/Discussion

