
MultiThreading
Object Orientated Programming in Java

Benjamin Kenwright

Outline

Review

Essential Java Multithreading

Examples

Today’s Practical

Review/Discussion

Question

Does the following code compile? What

would the output be?

Answer

Question

Does the following code compile? What

would the output be?

Answer

78-7616

Explain why?

Question

Does the following code compile? What

would the output be?

Answer

Question

Does the following code compile? What

would the output be?

Answer

Question

Does the following code compile? What

would the output be?

Answer

Yes

abcd abc false

abcd abcd true

Why Multithreading?

What is the rational?

Why make things complicated?

What would happen if we didn’t have

multithreading?

Concurrency & Parallelism

Threading

Advantages & Disadvantages of Threads

Java Threads

Class: java.lang.Thread

Interface: java.lang.Runnable

Multithreaded Programming

Thread Definition

Definition: A thread is a single sequential

flow of control within a program (also

called lightweight process)

Thread

Each thread acts like its own sequential
program

Underlying mechanism divides up CPU
between multiple threads

Two types of multithreaded applications

Make many threads that do many tasks in
parallel, i.e., no communication between the
threads (GUI)

Make many threads that do many tasks
concurrently, i.e., communication between the
threads (data access)

Advantages/Disadvantages

Advantages

Responsiveness, e.g., of user interfaces

Resource sharing

Economy

Utilization of multiprocessor hardware
architectures

Disadvantages

More complicated code

Deadlocks (very hard to debug logical
program errors)

Single & Multithreaded

Processes

User and Kernel Threads

Thread management done by user-level

threads library

Supported by the kernel

Java Threads

Java threads may be created by

Extending Thread class

Implementing the Runnable interface

Class Thread

The simplest way to make a thread

Treats a thread as an object

Override the run() method, i.e., the
thread’s “main”

Typically a loop

Continues for the life of the thread

Create Thread object, call method start()

Performs initialization, call method run()

Thread terminates when run() exits

Extending the Thread Class

Extending the Thread Class

Example

javac ThreadTest.java

java -cp . ThreadTest

Multithreaded Programming

Sharing Resources

Single threaded programming: you own
everything, no problem with sharing

Multi-threaded programming: more than one
thread may try to use a shared resource at
the same time
Add and withdraw from a bank account

Using the speakers at the same time, etc.

Java provides locks, i.e., monitors, for
objects, so you can wrap an object around a
resource
First thread that acquires the lock gains control

of the object, and the other threads cannot call
synchronized methods for that object

Locks

One lock pr. object for the object’s methods

One lock pr. class for the class’ static
methods

Typically data is private, only accessed
through methods
Must be private to be protected against

concurrent access

If a method is synchronized, entering
that method acquires the lock
No other thread can call any synchronized

method for that object until the lock is released

Sharing Resources, cont.

Only one synchronized method can be

called at any time for a particular object

Sharing Resources, cont.

Efficiency

Memory: Each object has a lock

implemented in Object

Speed and Overhead (e.g., calling)

• Older standard Java libraries used

synchronized a lot, did not provide any

alternatives

Sharing Resources, Example

Sharing Resources, Example

Sharing Resources, Example cont.

Sharing Resources, Example cont.

Sharing Resources, Example cont.

The Runnable Interface

To inherit from an existing object and

make it a thread, implement the

Runnable interface

A more classical, function-oriented way

to use threads

The Runnable Interface, cont .

The Runnable Interface, cont.

Java Thread Management

suspend() – suspends execution of the
currently running thread

sleep() – puts the currently running thread to
sleep for a specified amount of time

resume() – resumes execution of a suspended
thread

stop() – stops execution of a thread

Synchronized Fields and Constructors

Issues

Thread priority

Thread groups

Daemon (unix term)

similar to a service (on

Win32)

Deadlock

Very hard to detect

logical errors in programs

Deadlocks

Deadlocks, cont.

Summary

Overview Multithreading with Java

Single-threaded programming: live by all by
your self, own everything, no contention for
resources

Multithreading programming: suddenly “others”
can have collisions and destroy information, get
locked up over the use of resources

Multithreading is built-into the Java
programming language

Multithreading makes Java programs
complicated
Multithreading is by nature difficult, e.g., deadlocks

This Week

Read Associated Chapters

Review Slides

Java Exercises

Exercises

Chapter 29

Exercises 29.1 to 29.4

Questions/Discussion

