
Generic Types and

Collections
Object Orientated Programming in Java

Benjamin Kenwright

Outline

Review

Essential Generic Type Concepts

Collections with Java

Today’s Practical

Review/Discussion

Question
Does the following code compile? What

would the output be?

Answer

7

Question

Does the following code compile? What

would the output be?

Answer

val:12

3:val

Question

What will the following code print?

a) 1

b) 10

c) 16

d) 31

Answer

c) 16

Question

Does the following code compile? What

would the output be?

Answer

96

Question

Does the following code compile? What

would the output be?

Answer

5 10

Question
Does the following
code compile? What
would the output be?

a) (that is, the empty
string, printed twice)
b) *
c) !***
d) !****
e) !!!***

Answer

c) !***

Question
What is the output of the following

program?

Answer

B) 123.321Hi!

Generic Types

Generics is the capability to

parameterize types

Flexibility to define a class or a method

with generic types that the compiler can

replace with concrete types

Example

<T> represents the formal generic type

Replaced by an actual concrete type

Why use Generic Types?

Why use Generics?

Identify errors at compile time

Explicit type checking

Robust and reliable programs

Example

Arrays

Create array for `strings':

Only add `strings’ to the array

Example

Writing Generic Class

Specify the ‘Type’ in the class definition

e.g., <E>, <T>, …

Use the Type as needed

Example

Example cont.

Generic Type ‘Integer’

Output 1

Summary

Generic Types with Java

Advantages of Generic Types

Flexibility/Robustness

Incorporate Generic Types into your

implementations

Examples

This Week

Read Associated Chapters

Review Slides

Java Exercises

Exercises

Exercises 21.1 to 21.2 (Generics)

25.1 to 25.2 (Arrays/Lists)

Questions/Discussion

